File size: 7,507 Bytes
a34dbd2 81d28ab a34dbd2 402438d a34dbd2 f7f1be2 a34dbd2 f7f1be2 a34dbd2 2021ad4 a34dbd2 f7f1be2 ec43d13 a34dbd2 7836f7d 0cc05a9 a34dbd2 7836f7d 384aa04 a34dbd2 384aa04 a34dbd2 a775d6d f7f1be2 a775d6d 2145d19 f7f1be2 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 |
import gradio as gr
import os
import json
import requests
#Streaming endpoint
API_URL = "https://api.openai.com/v1/chat/completions" #os.getenv("API_URL") + "/generate_stream"
#Huggingface provided GPT4 OpenAI API Key
OPENAI_API_KEY = os.getenv("OPENAI_API_KEY")
#Inferenec function
def predict(system_msg, inputs, top_p, temperature, chat_counter, chatbot=[], history=[]):
headers = {
"Content-Type": "application/json",
"Authorization": f"Bearer {OPENAI_API_KEY}"
}
print(f"system message is ^^ {system_msg}")
if system_msg.strip() == '':
initial_message = [{"role": "user", "content": f"{inputs}"},]
multi_turn_message = []
else:
initial_message= [{"role": "system", "content": system_msg},
{"role": "user", "content": f"{inputs}"},]
multi_turn_message = [{"role": "system", "content": system_msg},]
if chat_counter == 0 :
payload = {
"model": "gpt-4",
"messages": initial_message ,
"temperature" : 1.0,
"top_p":1.0,
"n" : 1,
"stream": True,
"presence_penalty":0,
"frequency_penalty":0,
}
print(f"chat_counter - {chat_counter}")
else: #if chat_counter != 0 :
messages=multi_turn_message # Of the type of - [{"role": "system", "content": system_msg},]
for data in chatbot:
user = {}
user["role"] = "user"
user["content"] = data[0]
assistant = {}
assistant["role"] = "assistant"
assistant["content"] = data[1]
messages.append(user)
messages.append(assistant)
temp = {}
temp["role"] = "user"
temp["content"] = inputs
messages.append(temp)
#messages
payload = {
"model": "gpt-3.5-turbo",
"messages": messages, # Of the type of [{"role": "user", "content": f"{inputs}"}],
"temperature" : temperature, #1.0,
"top_p": top_p, #1.0,
"n" : 1,
"stream": True,
"presence_penalty":0,
"frequency_penalty":0,
"max_tokens": 400 # Limiting the token count to 400
}
chat_counter+=1
history.append(inputs)
print(f"Logging : payload is - {payload}")
# make a POST request to the API endpoint using the requests.post method, passing in stream=True
response = requests.post(API_URL, headers=headers, json=payload, stream=True)
print(f"Logging : response code - {response}")
token_counter = 0
partial_words = ""
counter=0
for chunk in response.iter_lines():
#Skipping first chunk
if counter == 0:
counter+=1
continue
# check whether each line is non-empty
if chunk.decode() :
chunk = chunk.decode()
# decode each line as response data is in bytes
if len(chunk) > 12 and "content" in json.loads(chunk[6:])['choices'][0]['delta']:
partial_words = partial_words + json.loads(chunk[6:])['choices'][0]["delta"]["content"]
if token_counter == 0:
history.append(" " + partial_words)
else:
history[-1] = partial_words
chat = [(history[i], history[i + 1]) for i in range(0, len(history) - 1, 2) ] # convert to tuples of list
token_counter+=1
yield chat, history, chat_counter, response # resembles {chatbot: chat, state: history}
#Resetting to blank
def reset_textbox():
return gr.update(value='')
#to set a component as visible=False
def set_visible_false():
return gr.update(visible=False)
#to set a component as visible=True
def set_visible_true():
return gr.update(visible=True)
title = """<h1 align="center">🔥Social Studies Assistant for Primary 6 Students +🚀Gradio-Streaming</h1>"""
#Using info to add additional information about System message in GPT4
system_msg_info = """The system message is used to set the context and behavior of the AI assistant at the beginning of a conversation."""
#Modifying existing Gradio Theme
theme = gr.themes.Soft(primary_hue="indigo", secondary_hue="blue", neutral_hue="blue",
text_size=gr.themes.sizes.text_lg)
with gr.Blocks(css = """#col_container { margin-left: auto; margin-right: auto;} #chatbot {height: 520px; overflow: auto;}""",
theme=theme) as demo:
gr.HTML(title)
gr.HTML("""<h3 align="center">🔥This application provides AI assistance for Primary 6 Social Studies students in Singapore focusing on South East Asian Kingdoms 🎉🥳🎉🙌</h1>""")
with gr.Column(elem_id = "col_container"):
#GPT4 API Key is provided by Huggingface
with gr.Accordion(label="System message:", open=False):
system_msg = gr.Textbox(label="Instruct the AI Assistant to set its behaviour",
info = system_msg_info,
value="You are an expert teacher for Primary 6 Social Studies in Singapore. Explain clearly and concisely about the South East Asian Kingdoms, specifically: Legacies of Funan, Srivijaya, Sukhothai, Majapahit, Melaka, and Angkor. Ensure your explanations are suitable for Primary 6 students.")
accordion_msg = gr.HTML(value="🚧 To set System message you will have to refresh the app", visible=False)
chatbot = gr.Chatbot(label='SS Coach', elem_id="chatbot")
inputs = gr.Textbox(placeholder= "Hi there!", label= "Type an input and press Enter")
state = gr.State([])
with gr.Row():
with gr.Column(scale=7):
b1 = gr.Button().style(full_width=True)
with gr.Column(scale=3):
server_status_code = gr.Textbox(label="Status code from OpenAI server", )
#top_p, temperature
with gr.Accordion("Parameters", open=False):
top_p = gr.Slider( minimum=-0, maximum=1.0, value=1.0, step=0.05, interactive=True, label="Top-p (nucleus sampling)",)
temperature = gr.Slider( minimum=-0, maximum=5.0, value=1.0, step=0.1, interactive=True, label="Temperature",)
chat_counter = gr.Number(value=0, visible=False, precision=0)
#Event handling
inputs.submit( predict, [system_msg, inputs, top_p, temperature, chat_counter, chatbot, state], [chatbot, state, chat_counter, server_status_code],) #openai_api_key
b1.click( predict, [system_msg, inputs, top_p, temperature, chat_counter, chatbot, state], [chatbot, state, chat_counter, server_status_code],) #openai_api_key
inputs.submit(set_visible_false, [], [system_msg])
b1.click(set_visible_false, [], [system_msg])
inputs.submit(set_visible_true, [], [accordion_msg])
b1.click(set_visible_true, [], [accordion_msg])
b1.click(reset_textbox, [], [inputs])
inputs.submit(reset_textbox, [], [inputs])
# Fix the indentation here
with gr.Accordion(label="Examples for System message:", open=False):
gr.Examples(
examples=[["You are a Social Studies Coach for Primary 6 students in Singapore. Use Socratic questioning to help students discover the legacies of South East Asian Kingdoms such as Funan, Srivijaya, Sukhothai, Majapahit, Melaka, and Angkor. If a student asks about a topic outside of these, kindly redirect them to focus on the specified kingdoms."]],
inputs=system_msg,)
demo.queue(max_size=99, concurrency_count=40).launch(debug=True) |