File size: 7,507 Bytes
a34dbd2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
81d28ab
a34dbd2
 
 
 
 
 
402438d
 
 
a34dbd2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f7f1be2
a34dbd2
 
f7f1be2
a34dbd2
 
2021ad4
a34dbd2
 
 
 
 
f7f1be2
 
ec43d13
a34dbd2
 
 
7836f7d
 
0cc05a9
a34dbd2
7836f7d
384aa04
a34dbd2
 
 
 
 
 
 
 
 
 
 
 
 
 
384aa04
 
a34dbd2
 
 
 
 
 
 
 
 
a775d6d
 
 
f7f1be2
a775d6d
2145d19
f7f1be2
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
import gradio as gr
import os 
import json 
import requests

#Streaming endpoint 
API_URL = "https://api.openai.com/v1/chat/completions" #os.getenv("API_URL") + "/generate_stream"

#Huggingface provided GPT4 OpenAI API Key 
OPENAI_API_KEY = os.getenv("OPENAI_API_KEY") 

#Inferenec function
def predict(system_msg, inputs, top_p, temperature, chat_counter, chatbot=[], history=[]):  

    headers = {
    "Content-Type": "application/json",
    "Authorization": f"Bearer {OPENAI_API_KEY}"
    }
    print(f"system message is ^^ {system_msg}")
    if system_msg.strip() == '':
        initial_message = [{"role": "user", "content": f"{inputs}"},]
        multi_turn_message = []
    else:
        initial_message= [{"role": "system", "content": system_msg},
                   {"role": "user", "content": f"{inputs}"},]
        multi_turn_message = [{"role": "system", "content": system_msg},]
        
    if chat_counter == 0 :
        payload = {
        "model": "gpt-4",
        "messages": initial_message , 
        "temperature" : 1.0,
        "top_p":1.0,
        "n" : 1,
        "stream": True,
        "presence_penalty":0,
        "frequency_penalty":0,
        }
        print(f"chat_counter - {chat_counter}")
    else: #if chat_counter != 0 :
        messages=multi_turn_message # Of the type of - [{"role": "system", "content": system_msg},]
        for data in chatbot:
          user = {}
          user["role"] = "user" 
          user["content"] = data[0] 
          assistant = {}
          assistant["role"] = "assistant" 
          assistant["content"] = data[1]
          messages.append(user)
          messages.append(assistant)
        temp = {}
        temp["role"] = "user" 
        temp["content"] = inputs
        messages.append(temp)
        #messages
        payload = {
        "model": "gpt-3.5-turbo",
        "messages": messages, # Of the type of [{"role": "user", "content": f"{inputs}"}],
        "temperature" : temperature, #1.0,
        "top_p": top_p, #1.0,
        "n" : 1,
        "stream": True,
        "presence_penalty":0,
        "frequency_penalty":0,
        "max_tokens": 400  # Limiting the token count to 400
    }

    chat_counter+=1

    history.append(inputs)
    print(f"Logging : payload is - {payload}")
    # make a POST request to the API endpoint using the requests.post method, passing in stream=True
    response = requests.post(API_URL, headers=headers, json=payload, stream=True)
    print(f"Logging : response code - {response}")
    token_counter = 0 
    partial_words = "" 

    counter=0
    for chunk in response.iter_lines():
        #Skipping first chunk
        if counter == 0:
          counter+=1
          continue
        # check whether each line is non-empty
        if chunk.decode() :
          chunk = chunk.decode()
          # decode each line as response data is in bytes
          if len(chunk) > 12 and "content" in json.loads(chunk[6:])['choices'][0]['delta']:
              partial_words = partial_words + json.loads(chunk[6:])['choices'][0]["delta"]["content"]
              if token_counter == 0:
                history.append(" " + partial_words)
              else:
                history[-1] = partial_words
              chat = [(history[i], history[i + 1]) for i in range(0, len(history) - 1, 2) ]  # convert to tuples of list
              token_counter+=1
              yield chat, history, chat_counter, response  # resembles {chatbot: chat, state: history}  
                   
#Resetting to blank
def reset_textbox():
    return gr.update(value='')

#to set a component as visible=False
def set_visible_false():
    return gr.update(visible=False)

#to set a component as visible=True
def set_visible_true():
    return gr.update(visible=True)

title = """<h1 align="center">🔥Social Studies Assistant for Primary 6 Students +🚀Gradio-Streaming</h1>"""

#Using info to add additional information about System message in GPT4
system_msg_info = """The system message is used to set the context and behavior of the AI assistant at the beginning of a conversation."""

#Modifying existing Gradio Theme
theme = gr.themes.Soft(primary_hue="indigo", secondary_hue="blue", neutral_hue="blue",
                      text_size=gr.themes.sizes.text_lg)                

with gr.Blocks(css = """#col_container { margin-left: auto; margin-right: auto;} #chatbot {height: 520px; overflow: auto;}""",
                      theme=theme) as demo:
    gr.HTML(title)
    gr.HTML("""<h3 align="center">🔥This application provides AI assistance for Primary 6 Social Studies students in Singapore focusing on South East Asian Kingdoms 🎉🥳🎉🙌</h1>""")

    
    with gr.Column(elem_id = "col_container"):
        #GPT4 API Key is provided by Huggingface 
        with gr.Accordion(label="System message:", open=False):
            system_msg = gr.Textbox(label="Instruct the AI Assistant to set its behaviour", 
                        info = system_msg_info, 
                        value="You are an expert teacher for Primary 6 Social Studies in Singapore. Explain clearly and concisely about the South East Asian Kingdoms, specifically: Legacies of Funan, Srivijaya, Sukhothai, Majapahit, Melaka, and Angkor. Ensure your explanations are suitable for Primary 6 students.")
            accordion_msg = gr.HTML(value="🚧 To set System message you will have to refresh the app", visible=False)
        chatbot = gr.Chatbot(label='SS Coach', elem_id="chatbot")
        inputs = gr.Textbox(placeholder= "Hi there!", label= "Type an input and press Enter")
        state = gr.State([]) 
        with gr.Row():
            with gr.Column(scale=7):
                b1 = gr.Button().style(full_width=True)
            with gr.Column(scale=3):
                server_status_code = gr.Textbox(label="Status code from OpenAI server", )
    
        #top_p, temperature
        with gr.Accordion("Parameters", open=False):
            top_p = gr.Slider( minimum=-0, maximum=1.0, value=1.0, step=0.05, interactive=True, label="Top-p (nucleus sampling)",)
            temperature = gr.Slider( minimum=-0, maximum=5.0, value=1.0, step=0.1, interactive=True, label="Temperature",)
            chat_counter = gr.Number(value=0, visible=False, precision=0)

    #Event handling
    inputs.submit( predict, [system_msg, inputs, top_p, temperature, chat_counter, chatbot, state], [chatbot, state, chat_counter, server_status_code],)  #openai_api_key
    b1.click( predict, [system_msg, inputs, top_p, temperature, chat_counter, chatbot, state], [chatbot, state, chat_counter, server_status_code],)  #openai_api_key
    
    inputs.submit(set_visible_false, [], [system_msg])
    b1.click(set_visible_false, [], [system_msg])
    inputs.submit(set_visible_true, [], [accordion_msg])
    b1.click(set_visible_true, [], [accordion_msg])
    
    b1.click(reset_textbox, [], [inputs])
    inputs.submit(reset_textbox, [], [inputs])

    # Fix the indentation here
    with gr.Accordion(label="Examples for System message:", open=False):
        gr.Examples(
            examples=[["You are a Social Studies Coach for Primary 6 students in Singapore. Use Socratic questioning to help students discover the legacies of South East Asian Kingdoms such as Funan, Srivijaya, Sukhothai, Majapahit, Melaka, and Angkor. If a student asks about a topic outside of these, kindly redirect them to focus on the specified kingdoms."]],
            inputs=system_msg,)

demo.queue(max_size=99, concurrency_count=40).launch(debug=True)