File size: 3,822 Bytes
91a4436
a394efd
91a4436
c08d1fa
91a4436
 
 
aff05a7
a394efd
91a4436
 
 
 
 
a394efd
 
 
 
 
91a4436
 
 
 
 
 
a394efd
 
 
 
91a4436
 
 
a394efd
91a4436
 
 
 
 
 
 
 
 
 
 
 
 
 
 
aff05a7
91a4436
a394efd
91a4436
 
 
 
 
 
 
 
 
 
 
 
 
 
32b6873
 
 
 
 
91a4436
 
 
 
 
 
 
 
 
 
a394efd
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
32b6873
9aa07eb
c08d1fa
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
import csv
import re
import pandas as pd
import pickle
import sqlite3
import gradio as gr
import os
from qatch.connectors.sqlite_connector import SqliteConnector
def extract_tables(file_path):
    conn = sqlite3.connect(file_path)
    cursor = conn.cursor()
    cursor.execute("SELECT name FROM sqlite_master WHERE type='table';")
    tabelle = cursor.fetchall()
    tabelle = [tabella for tabella in tabelle if tabella[0] != 'sqlite_sequence']
    return tabelle

def extract_dataframes(file_path):
    conn = sqlite3.connect(file_path)
    tabelle = extract_tables(file_path) 
    dfs = {}
    for tabella in tabelle:
        nome_tabella = tabella[0]
        df = pd.read_sql_query(f"SELECT * FROM {nome_tabella}", conn)
        dfs[nome_tabella] = df
    conn.close()
    return dfs

def carica_sqlite(file_path, db_id):
    data_output = {'data_frames': extract_dataframes(file_path),'db':SqliteConnector(relative_db_path=file_path, db_name=db_id)}
    return data_output

# Funzione per leggere un file CSV
def load_csv(file):
    df = pd.read_csv(file)
    return df

# Funzione per leggere un file Excel
def carica_excel(file):
    xls = pd.ExcelFile(file)
    dfs = {}
    for sheet_name in xls.sheet_names:
        dfs[sheet_name] = xls.parse(sheet_name)
    return dfs

def load_data(data_path : str, db_name : str):
    data_output = {'data_frames': {} ,'db': None}
    table_name = os.path.splitext(os.path.basename(data_path))[0]
    if data_path.endswith(".sqlite") :
        data_output = carica_sqlite(data_path, db_name)
    elif data_path.endswith(".csv"):
        data_output['data_frames'] = {f"{table_name}_table" : load_csv(data_path)}
    elif data_path.endswith(".xlsx"):
        data_output['data_frames'] = carica_excel(data_path)
    else:
        raise gr.Error("Formato file non supportato. Carica un file SQLite, CSV o Excel.")    
    return data_output

def read_api(api_key_path):
    with open(api_key_path, "r", encoding="utf-8") as file:
        api_key = file.read()
        return api_key

def read_models_csv(file_path):
    # Reads a CSV file and returns a list of dictionaries
    models = []  # Change {} to []
    with open(file_path, mode="r", newline="") as file:
        reader = csv.DictReader(file)
        for row in reader:
            row["price"] = float(row["price"])  # Convert price to float
            models.append(row)  # Append to the list
    return models

def csv_to_dict(file_path):
    with open(file_path, mode='r', encoding='utf-8') as file:
        reader = csv.DictReader(file)
        data = []
        for row in reader:
            if "price" in row:
                row["price"] = float(row["price"])
            data.append(row)
    return data


def increment_filename(filename):
    base, ext = os.path.splitext(filename)
    numbers = re.findall(r'\d+', base)
    
    if numbers:
        max_num = max(map(int, numbers)) + 1
        new_base = re.sub(r'(\d+)', lambda m: str(max_num) if int(m.group(1)) == max(map(int, numbers)) else m.group(1), base)
    else:
        new_base = base + '1'
    
    return new_base + ext

def prepare_prompt(prompt, question, schema, samples):
    prompt = prompt.replace("{schema}", schema).replace("{question}", question)
    prompt += f" Some istanze: {samples}"
    return prompt

def generate_some_samples(connector, tbl_name):
    samples = []
    query = f"SELECT * FROM {tbl_name} LIMIT 3"
    try:
        sample_data = connector.execute_query(query)
        samples.append(str(sample_data))
    except Exception as e:
        samples.append(f"Error: {e}")
    return samples

def load_tables_dict_from_pkl(file_path):
    with open(file_path, 'rb') as f:
        return pickle.load(f)