Spaces:
Running
Running
File size: 9,190 Bytes
5c14f98 b4346be 5c14f98 b4346be 5c14f98 b4346be c4025fd b4346be 1a5f3ab b4346be d040c51 b4346be a0bf679 b4346be a0bf679 d040c51 a0bf679 706fcd8 a0bf679 b4346be d040c51 1a5f3ab 3920349 b4346be d040c51 1a5f3ab b13ea5a b4346be 91fa11f b4346be 1a5f3ab b4346be d040c51 b4346be 5c14f98 4e14aa0 1a5f3ab 6e89cd3 73fc10f 6e89cd3 4e14aa0 6e89cd3 1a5f3ab cbba1c3 5842019 73fc10f 29bd144 b4346be 3897ec7 1a5f3ab b4346be 5c14f98 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 |
import gradio as gr
import urllib
import re
import sys
import warnings
import torch
import torch.nn as nn
import ipywidgets as widgets
from ipywidgets import interact, fixed
from utils.helpers import *
from utils.voxelization import processStructures
from utils.model import Model
import numpy as np
import os
import moleculekit
print(moleculekit.__version__)
def update(inp, file, mode, custom_resids, clustering_threshold):
try:
filepath = file.name
except:
print("using pdbfile")
try:
pdb_file = inp
if (
re.match(
"[OPQ][0-9][A-Z0-9]{3}[0-9]|[A-NR-Z][0-9]([A-Z][A-Z0-9]{2}[0-9]){1,2}",
pdb_file,
).group()
== pdb_file
):
urllib.request.urlretrieve(
f"https://alphafold.ebi.ac.uk/files/AF-{pdb_file}-F1-model_v2.pdb",
f"files/{pdb_file}.pdb",
)
filepath = f"files/{pdb_file}.pdb"
except AttributeError:
if len(inp) == 4:
pdb_file = inp
urllib.request.urlretrieve(
f"http://files.rcsb.org/download/{pdb_file.lower()}.pdb1",
f"files/{pdb_file}.pdb",
)
filepath = f"files/{pdb_file}.pdb"
else:
return "pdb code must be 4 letters or Uniprot code does not match", ""
if mode == "All residues":
ids = get_all_protein_resids(filepath)
elif len(custom_resids)!=0:
ids=get_all_resids_from_list(filepath,custom_resids.replace(","," "))
else:
ids = get_all_metalbinding_resids(filepath)
voxels, prot_centers, prot_N, prots = processStructures(filepath, ids)
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
voxels.to(device)
print(voxels.shape)
model = Model()
model.to(device)
model.load_state_dict(torch.load("weights/metal_0.5A_v3_d0.2_16Abox.pth", map_location=torch.device('cpu')))
model.eval()
with warnings.catch_warnings():
warnings.filterwarnings("ignore")
output = model(voxels)
print(output.shape)
prot_v = np.vstack(prot_centers)
output_v = output.flatten().cpu().detach().numpy()
bb = get_bb(prot_v)
gridres = 0.5
grid, box_N = create_grid_fromBB(bb, voxelSize=gridres)
probability_values = get_probability_mean(grid, prot_v, output_v)
print(probability_values.shape)
write_cubefile(
bb,
probability_values,
box_N,
outname=f"output/metal_{pdb_file}.cube",
gridres=gridres,
)
message = find_unique_sites(
probability_values,
grid,
writeprobes=True,
probefile=f"output/probes_{pdb_file}.pdb",
threshold=7,
p=clustering_threshold,
)
return message, molecule(
filepath,
f"output/probes_{pdb_file}.pdb",
f"output/metal_{pdb_file}.cube",
)
def test():
x = """<!DOCTYPE html>
<html>
<head>
<meta http-equiv="content-type" content="text/html; charset=UTF-8" />
</head>
<body>
<script src="https://3Dmol.org/build/3Dmol-min.js" async></script> <div style="height: 400px; width: 400px; position: relative;" class="viewer_3Dmoljs" data-pdb="2POR" data-backgroundcolor="0xffffff" data-style="stick" ></div>
</body></html>"""
return f"""<iframe style="width: 100%; height: 480px" name="result" allow="midi; geolocation; microphone; camera;
display-capture; encrypted-media;" sandbox="allow-modals allow-forms
allow-scripts allow-same-origin allow-popups
allow-top-navigation-by-user-activation allow-downloads" allowfullscreen=""
allowpaymentrequest="" frameborder="0" srcdoc='{x}'></iframe>"""
def read_mol(molpath):
with open(molpath, "r") as fp:
lines = fp.readlines()
mol = ""
for l in lines:
mol += l
return mol
def molecule(pdb, probes, cube):
mol = read_mol(pdb)
probes = read_mol(probes)
cubefile = read_mol(cube)
x = (
"""<!DOCTYPE html>
<html>
<head>
<meta http-equiv="content-type" content="text/html; charset=UTF-8" />
<style>
body{
font-family:sans-serif
}
.mol-container {
width: 100%;
height: 400px;
position: relative;
}
.slider{
width:80%;
margin:0 auto
}
.slidercontainer{
display:flex;
}
.slidercontainer > * + * {
margin-left: 0.5rem;
}
#isovalue{
text-align:right}
</style>
<script src="https://3Dmol.csb.pitt.edu/build/3Dmol-min.js"></script>
<script src="https://cdnjs.cloudflare.com/ajax/libs/rangeslider.js/2.3.3/rangeslider.min.js" integrity="sha512-BUlWdwDeJo24GIubM+z40xcj/pjw7RuULBkxOTc+0L9BaGwZPwiwtbiSVzv31qR7TWx7bs6OPTE5IyfLOorboQ==" crossorigin="anonymous" referrerpolicy="no-referrer"></script>
</head>
<body>
<div class="slidercontainer">
<span>Isovalue </span>
<span id="isovalue">0.5</span>
<input class="slider" type="range" id="rangeslider" min="0" max="1" step="0.025" value=0.5>
</div>
<div id="container" class="mol-container"></div>
<script>
let viewer = null;
let voldata = null;
$(document).ready(function () {
let element = $("#container");
let config = { backgroundColor: "white" };
viewer = $3Dmol.createViewer( element, config );
viewer.ui.initiateUI();
let data = `"""
+ mol
+ """`
viewer.addModel( data, "pdb" );
let cubefile = `"""
+ cubefile
+ """`
voldata = new $3Dmol.VolumeData(cubefile, "cube");
viewer.addIsosurface(voldata, { isoval: 0.7 , color: "blue", alpha: 0.85, smoothness: 1 });
viewer.getModel(0).setStyle({}, {cartoon: {color: "grayCarbon"}});
let probes =`"""
+ probes
+ """`
viewer.addModel(probes, "pdb");
viewer.getModel(1).setStyle({ "resn": "ZN" }, { "sphere": { }});
viewer.getModel(1).setHoverable({}, true,
function (atom, viewer, event, container) {
if (!atom.label) {
atom.label = viewer.addLabel("ZN p=" + atom.pdbline.substring(55, 60), { position: atom, backgroundColor: "mintcream", fontColor: "black" });
}
},
function (atom, viewer) {
if (atom.label) {
viewer.removeLabel(atom.label);
delete atom.label;
}
}
);
viewer.zoomTo();
viewer.render();
viewer.zoom(0.8, 2000);
});
</script>
<script>
$("#rangeslider").rangeslider().on("change", function (el) {
isoval = parseFloat(el.target.value);
$("#isovalue").text(el.target.value)
viewer.addIsosurface(voldata, { isoval: parseFloat(el.target.value), color: "blue", alpha: 0.85, smoothness: 1 });
viewer.render();
});
</script>
</body></html>"""
)
return f"""<iframe style="width: 100%; height: 480px" name="result" allow="midi; geolocation; microphone; camera;
display-capture; encrypted-media;" sandbox="allow-modals allow-forms
allow-scripts allow-same-origin allow-popups
allow-top-navigation-by-user-activation allow-downloads" allowfullscreen=""
allowpaymentrequest="" frameborder="0" srcdoc='{x}'></iframe>"""
metal3d = gr.Blocks()
with metal3d:
gr.Markdown("# Metal3D")
with gr.Tabs():
with gr.TabItem("Input"):
inp = gr.Textbox( placeholder="PDB Code or Uniprot identifier or upload file below", label="Input molecule"
)
file = gr.File(file_count="single", type="file")
with gr.TabItem("Settings"):
with gr.Row():
mode = gr.Radio(
["All metalbinding residues (ASP, CYS, GLU, HIS)", "All residues"],
label="Residues to use for prediction",
)
custom_resids = gr.Textbox(placeholder="Comma separated list of residues", label="Custom residues")
with gr.Row():
clustering_threshold = gr.Slider(minimum=0.15,maximum=1, value=0.15,step=0.05, label="Clustering threshold")
distance_cutoff = gr.Slider(minimum=1,maximum=10, value=7,step=1, label="Clustering distance cutoff")
btn = gr.Button("Run")
gr.Markdown(
""" <small>Inference using CPU-only, can be quite slow for more than 20 residues. Use Colab notebook for GPU acceleration</small>
"""
)
gr.Markdown("# Output")
out = gr.Textbox(label="status")
mol = gr.HTML()
btn.click(fn=update, inputs=[inp, file, mode, custom_resids, clustering_threshold], outputs=[out, mol])
metal3d.launch()
|