File size: 9,190 Bytes
5c14f98
 
b4346be
 
 
 
5c14f98
b4346be
 
 
 
5c14f98
b4346be
 
 
 
 
 
c4025fd
 
 
 
b4346be
1a5f3ab
b4346be
d040c51
b4346be
 
a0bf679
b4346be
a0bf679
 
 
 
 
 
 
 
 
 
 
d040c51
a0bf679
 
 
 
 
 
 
706fcd8
a0bf679
 
b4346be
 
d040c51
1a5f3ab
3920349
b4346be
d040c51
1a5f3ab
b13ea5a
b4346be
 
 
 
 
91fa11f
b4346be
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1a5f3ab
b4346be
 
 
d040c51
b4346be
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5c14f98
4e14aa0
1a5f3ab
6e89cd3
73fc10f
6e89cd3
 
4e14aa0
6e89cd3
 
 
 
 
 
1a5f3ab
 
 
cbba1c3
5842019
73fc10f
 
 
29bd144
b4346be
 
 
3897ec7
1a5f3ab
b4346be
 
5c14f98
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
import gradio as gr

import urllib
import re
import sys
import warnings

import torch
import torch.nn as nn
import ipywidgets as widgets
from ipywidgets import interact, fixed

from utils.helpers import *
from utils.voxelization import processStructures
from utils.model import Model
import numpy as np

import os
import moleculekit

print(moleculekit.__version__)


def update(inp, file, mode, custom_resids, clustering_threshold):
    try:
        filepath = file.name
    except:
        print("using pdbfile")
        try:
            pdb_file = inp
            if (
                re.match(
                    "[OPQ][0-9][A-Z0-9]{3}[0-9]|[A-NR-Z][0-9]([A-Z][A-Z0-9]{2}[0-9]){1,2}",
                    pdb_file,
                ).group()
                == pdb_file
            ):
                urllib.request.urlretrieve(
                    f"https://alphafold.ebi.ac.uk/files/AF-{pdb_file}-F1-model_v2.pdb",
                    f"files/{pdb_file}.pdb",
                )
            filepath = f"files/{pdb_file}.pdb"
        except AttributeError:
            if len(inp) == 4:
                pdb_file = inp
                urllib.request.urlretrieve(
                    f"http://files.rcsb.org/download/{pdb_file.lower()}.pdb1",
                    f"files/{pdb_file}.pdb",
                )
                filepath = f"files/{pdb_file}.pdb"
            else:
                return "pdb code must be 4 letters or Uniprot code does not match", ""

    if mode == "All residues":
        ids = get_all_protein_resids(filepath)
    elif len(custom_resids)!=0:
        ids=get_all_resids_from_list(filepath,custom_resids.replace(","," "))
    else:
        ids = get_all_metalbinding_resids(filepath)
    
    voxels, prot_centers, prot_N, prots = processStructures(filepath, ids)
    device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
    voxels.to(device)
    print(voxels.shape)
    model = Model()
    model.to(device)
    model.load_state_dict(torch.load("weights/metal_0.5A_v3_d0.2_16Abox.pth", map_location=torch.device('cpu')))
    model.eval()
    with warnings.catch_warnings():
        warnings.filterwarnings("ignore")
        output = model(voxels)
    print(output.shape)
    prot_v = np.vstack(prot_centers)
    output_v = output.flatten().cpu().detach().numpy()
    bb = get_bb(prot_v)
    gridres = 0.5
    grid, box_N = create_grid_fromBB(bb, voxelSize=gridres)
    probability_values = get_probability_mean(grid, prot_v, output_v)
    print(probability_values.shape)
    write_cubefile(
        bb,
        probability_values,
        box_N,
        outname=f"output/metal_{pdb_file}.cube",
        gridres=gridres,
    )
    message = find_unique_sites(
        probability_values,
        grid,
        writeprobes=True,
        probefile=f"output/probes_{pdb_file}.pdb",
        threshold=7,
        p=clustering_threshold,
    )

    return message, molecule(
        filepath,
        f"output/probes_{pdb_file}.pdb",
        f"output/metal_{pdb_file}.cube",
    )


def test():
    x = """<!DOCTYPE html>
        <html>
        <head>    
    <meta http-equiv="content-type" content="text/html; charset=UTF-8" />
    </head>
    <body>  
    <script src="https://3Dmol.org/build/3Dmol-min.js" async></script> <div style="height: 400px; width: 400px; position: relative;" class="viewer_3Dmoljs" data-pdb="2POR" data-backgroundcolor="0xffffff" data-style="stick" ></div>
        </body></html>"""
    return f"""<iframe style="width: 100%; height: 480px" name="result" allow="midi; geolocation; microphone; camera; 
    display-capture; encrypted-media;" sandbox="allow-modals allow-forms 
    allow-scripts allow-same-origin allow-popups 
    allow-top-navigation-by-user-activation allow-downloads" allowfullscreen="" 
    allowpaymentrequest="" frameborder="0" srcdoc='{x}'></iframe>"""


def read_mol(molpath):
    with open(molpath, "r") as fp:
        lines = fp.readlines()
    mol = ""
    for l in lines:
        mol += l
    return mol


def molecule(pdb, probes, cube):
    mol = read_mol(pdb)
    probes = read_mol(probes)
    cubefile = read_mol(cube)
    x = (
        """<!DOCTYPE html>
        <html>
        <head>    
    <meta http-equiv="content-type" content="text/html; charset=UTF-8" />
    <style>
    body{
        font-family:sans-serif
    }
.mol-container {
  width: 100%;
  height: 400px;
  position: relative;
}
.slider{
    width:80%;
    margin:0 auto
}
.slidercontainer{
    display:flex;
}
.slidercontainer > * + * {
    margin-left: 0.5rem;
}
#isovalue{
 text-align:right}
</style>
<script src="https://3Dmol.csb.pitt.edu/build/3Dmol-min.js"></script>
<script src="https://cdnjs.cloudflare.com/ajax/libs/rangeslider.js/2.3.3/rangeslider.min.js" integrity="sha512-BUlWdwDeJo24GIubM+z40xcj/pjw7RuULBkxOTc+0L9BaGwZPwiwtbiSVzv31qR7TWx7bs6OPTE5IyfLOorboQ==" crossorigin="anonymous" referrerpolicy="no-referrer"></script>
    </head>
    <body>  
    <div class="slidercontainer">
    <span>Isovalue </span>
    <span id="isovalue">0.5</span>
    <input class="slider" type="range" id="rangeslider" min="0" max="1" step="0.025" value=0.5>
    </div>
    
    <div id="container" class="mol-container"></div>
            <script>
            let viewer = null;
            let voldata = null;
            $(document).ready(function () {
                let element = $("#container");
                let config = { backgroundColor: "white" };
                viewer = $3Dmol.createViewer( element, config );
                viewer.ui.initiateUI();
                let data = `"""
        + mol
        + """`
                viewer.addModel( data, "pdb" );
                
                let cubefile = `"""
        + cubefile
        + """`
                voldata = new $3Dmol.VolumeData(cubefile, "cube");
                viewer.addIsosurface(voldata, { isoval: 0.7 , color: "blue", alpha: 0.85, smoothness: 1 });
                viewer.getModel(0).setStyle({}, {cartoon: {color: "grayCarbon"}}); 
                let probes =`"""
        + probes
        + """`
                viewer.addModel(probes, "pdb");
                viewer.getModel(1).setStyle({ "resn": "ZN" }, { "sphere": { }});
                viewer.getModel(1).setHoverable({}, true,
                    function (atom, viewer, event, container) {
                        if (!atom.label) {
                            atom.label = viewer.addLabel("ZN p=" + atom.pdbline.substring(55, 60), { position: atom, backgroundColor: "mintcream", fontColor: "black" });
                        }
                    },
                    function (atom, viewer) {
                        if (atom.label) {
                            viewer.removeLabel(atom.label);
                            delete atom.label;
                        }
                    }
                );
                viewer.zoomTo();
                viewer.render();
                viewer.zoom(0.8, 2000);
        });
        </script>
         <script>
         $("#rangeslider").rangeslider().on("change", function (el) {
                isoval = parseFloat(el.target.value);
                $("#isovalue").text(el.target.value)
                viewer.addIsosurface(voldata, { isoval: parseFloat(el.target.value), color: "blue", alpha: 0.85, smoothness: 1 });
                viewer.render();
            });
            </script>
        </body></html>"""
    )

    return f"""<iframe style="width: 100%; height: 480px" name="result" allow="midi; geolocation; microphone; camera; 
    display-capture; encrypted-media;" sandbox="allow-modals allow-forms 
    allow-scripts allow-same-origin allow-popups 
    allow-top-navigation-by-user-activation allow-downloads" allowfullscreen="" 
    allowpaymentrequest="" frameborder="0" srcdoc='{x}'></iframe>"""


metal3d = gr.Blocks()

with metal3d:
    gr.Markdown("# Metal3D")
    with gr.Tabs():
        with gr.TabItem("Input"):
            inp = gr.Textbox(            placeholder="PDB Code or Uniprot identifier or upload file below", label="Input molecule"
            )
            file = gr.File(file_count="single", type="file")
            
        with gr.TabItem("Settings"):
            with gr.Row():
                mode = gr.Radio(
                    ["All metalbinding residues (ASP, CYS, GLU, HIS)", "All residues"],
                    label="Residues to use for prediction",
                )
                custom_resids = gr.Textbox(placeholder="Comma separated list of residues", label="Custom residues")
            with gr.Row():
                clustering_threshold = gr.Slider(minimum=0.15,maximum=1, value=0.15,step=0.05, label="Clustering threshold")
                distance_cutoff = gr.Slider(minimum=1,maximum=10, value=7,step=1, label="Clustering distance cutoff")
        btn = gr.Button("Run")
    gr.Markdown(
        """ <small>Inference using CPU-only, can be quite slow for more than 20 residues. Use Colab notebook for GPU acceleration</small>
    """
    )


    gr.Markdown("# Output")
    out = gr.Textbox(label="status")
    mol = gr.HTML()
    btn.click(fn=update, inputs=[inp, file, mode, custom_resids, clustering_threshold], outputs=[out, mol])

metal3d.launch()