File size: 7,071 Bytes
4a3f787
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
import copy, time
import numpy as np
from collections import defaultdict
from rdkit import Chem, RDLogger
from rdkit.Chem import AllChem, rdMolTransforms
from rdkit import Geometry
import networkx as nx
from scipy.optimize import differential_evolution

RDLogger.DisableLog('rdApp.*')

"""
    Conformer matching routines from Torsional Diffusion
"""

def GetDihedral(conf, atom_idx):
    return rdMolTransforms.GetDihedralRad(conf, atom_idx[0], atom_idx[1], atom_idx[2], atom_idx[3])


def SetDihedral(conf, atom_idx, new_vale):
    rdMolTransforms.SetDihedralRad(conf, atom_idx[0], atom_idx[1], atom_idx[2], atom_idx[3], new_vale)


def apply_changes(mol, values, rotable_bonds, conf_id):
    opt_mol = copy.copy(mol)
    [SetDihedral(opt_mol.GetConformer(conf_id), rotable_bonds[r], values[r]) for r in range(len(rotable_bonds))]
    return opt_mol


def optimize_rotatable_bonds(mol, true_mol, rotable_bonds, probe_id=-1, ref_id=-1, seed=0, popsize=15, maxiter=500,
                             mutation=(0.5, 1), recombination=0.8):
    opt = OptimizeConformer(mol, true_mol, rotable_bonds, seed=seed, probe_id=probe_id, ref_id=ref_id)
    max_bound = [np.pi] * len(opt.rotable_bonds)
    min_bound = [-np.pi] * len(opt.rotable_bonds)
    bounds = (min_bound, max_bound)
    bounds = list(zip(bounds[0], bounds[1]))

    # Optimize conformations
    result = differential_evolution(opt.score_conformation, bounds,
                                    maxiter=maxiter, popsize=popsize,
                                    mutation=mutation, recombination=recombination, disp=False, seed=seed)
    opt_mol = apply_changes(opt.mol, result['x'], opt.rotable_bonds, conf_id=probe_id)

    return opt_mol


class OptimizeConformer:
    def __init__(self, mol, true_mol, rotable_bonds, probe_id=-1, ref_id=-1, seed=None):
        super(OptimizeConformer, self).__init__()
        if seed:
            np.random.seed(seed)
        self.rotable_bonds = rotable_bonds
        self.mol = mol
        self.true_mol = true_mol
        self.probe_id = probe_id
        self.ref_id = ref_id

    def score_conformation(self, values):
        for i, r in enumerate(self.rotable_bonds):
            SetDihedral(self.mol.GetConformer(self.probe_id), r, values[i])
        return RMSD(self.mol, self.true_mol, self.probe_id, self.ref_id)


def get_torsion_angles(mol):
    torsions_list = []
    G = nx.Graph()
    for i, atom in enumerate(mol.GetAtoms()):
        G.add_node(i)
    nodes = set(G.nodes())
    for bond in mol.GetBonds():
        start, end = bond.GetBeginAtomIdx(), bond.GetEndAtomIdx()
        G.add_edge(start, end)
    for e in G.edges():
        G2 = copy.deepcopy(G)
        G2.remove_edge(*e)
        if nx.is_connected(G2): continue
        l = list(sorted(nx.connected_components(G2), key=len)[0])
        if len(l) < 2: continue
        n0 = list(G2.neighbors(e[0]))
        n1 = list(G2.neighbors(e[1]))
        torsions_list.append(
            (n0[0], e[0], e[1], n1[0])
        )
    return torsions_list


# GeoMol
def get_torsions(mol_list):
    print('USING GEOMOL GET TORSIONS FUNCTION')
    atom_counter = 0
    torsionList = []
    for m in mol_list:
        torsionSmarts = '[!$(*#*)&!D1]-&!@[!$(*#*)&!D1]'
        torsionQuery = Chem.MolFromSmarts(torsionSmarts)
        matches = m.GetSubstructMatches(torsionQuery)
        for match in matches:
            idx2 = match[0]
            idx3 = match[1]
            bond = m.GetBondBetweenAtoms(idx2, idx3)
            jAtom = m.GetAtomWithIdx(idx2)
            kAtom = m.GetAtomWithIdx(idx3)
            for b1 in jAtom.GetBonds():
                if (b1.GetIdx() == bond.GetIdx()):
                    continue
                idx1 = b1.GetOtherAtomIdx(idx2)
                for b2 in kAtom.GetBonds():
                    if ((b2.GetIdx() == bond.GetIdx())
                            or (b2.GetIdx() == b1.GetIdx())):
                        continue
                    idx4 = b2.GetOtherAtomIdx(idx3)
                    # skip 3-membered rings
                    if (idx4 == idx1):
                        continue
                    if m.GetAtomWithIdx(idx4).IsInRing():
                        torsionList.append(
                            (idx4 + atom_counter, idx3 + atom_counter, idx2 + atom_counter, idx1 + atom_counter))
                        break
                    else:
                        torsionList.append(
                            (idx1 + atom_counter, idx2 + atom_counter, idx3 + atom_counter, idx4 + atom_counter))
                        break
                break

        atom_counter += m.GetNumAtoms()
    return torsionList


def A_transpose_matrix(alpha):
    return np.array([[np.cos(alpha), np.sin(alpha)], [-np.sin(alpha), np.cos(alpha)]], dtype=np.double)


def S_vec(alpha):
    return np.array([[np.cos(alpha)], [np.sin(alpha)]], dtype=np.double)


def GetDihedralFromPointCloud(Z, atom_idx):
    p = Z[list(atom_idx)]
    b = p[:-1] - p[1:]
    b[0] *= -1
    v = np.array([v - (v.dot(b[1]) / b[1].dot(b[1])) * b[1] for v in [b[0], b[2]]])
    # Normalize vectors
    v /= np.sqrt(np.einsum('...i,...i', v, v)).reshape(-1, 1)
    b1 = b[1] / np.linalg.norm(b[1])
    x = np.dot(v[0], v[1])
    m = np.cross(v[0], b1)
    y = np.dot(m, v[1])
    return np.arctan2(y, x)


def get_dihedral_vonMises(mol, conf, atom_idx, Z):
    Z = np.array(Z)
    v = np.zeros((2, 1))
    iAtom = mol.GetAtomWithIdx(atom_idx[1])
    jAtom = mol.GetAtomWithIdx(atom_idx[2])
    k_0 = atom_idx[0]
    i = atom_idx[1]
    j = atom_idx[2]
    l_0 = atom_idx[3]
    for b1 in iAtom.GetBonds():
        k = b1.GetOtherAtomIdx(i)
        if k == j:
            continue
        for b2 in jAtom.GetBonds():
            l = b2.GetOtherAtomIdx(j)
            if l == i:
                continue
            assert k != l
            s_star = S_vec(GetDihedralFromPointCloud(Z, (k, i, j, l)))
            a_mat = A_transpose_matrix(GetDihedral(conf, (k, i, j, k_0)) + GetDihedral(conf, (l_0, i, j, l)))
            v = v + np.matmul(a_mat, s_star)
    v = v / np.linalg.norm(v)
    v = v.reshape(-1)
    return np.arctan2(v[1], v[0])


def get_von_mises_rms(mol, mol_rdkit, rotable_bonds, conf_id):
    new_dihedrals = np.zeros(len(rotable_bonds))
    for idx, r in enumerate(rotable_bonds):
        new_dihedrals[idx] = get_dihedral_vonMises(mol_rdkit,
                                                   mol_rdkit.GetConformer(conf_id), r,
                                                   mol.GetConformer().GetPositions())
    mol_rdkit = apply_changes(mol_rdkit, new_dihedrals, rotable_bonds, conf_id)
    return RMSD(mol_rdkit, mol, conf_id)


def mmff_func(mol):
    mol_mmff = copy.deepcopy(mol)
    AllChem.MMFFOptimizeMoleculeConfs(mol_mmff, mmffVariant='MMFF94s')
    for i in range(mol.GetNumConformers()):
        coords = mol_mmff.GetConformers()[i].GetPositions()
        for j in range(coords.shape[0]):
            mol.GetConformer(i).SetAtomPosition(j,
                                                Geometry.Point3D(*coords[j]))


RMSD = AllChem.AlignMol