File size: 9,652 Bytes
4a3f787
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
import os
import subprocess
import warnings
from datetime import datetime
import signal
from contextlib import contextmanager
import numpy as np
import torch
import yaml
from rdkit import Chem
from rdkit.Chem import RemoveHs, MolToPDBFile
from torch_geometric.nn.data_parallel import DataParallel

from models.all_atom_score_model import TensorProductScoreModel as AAScoreModel
from models.score_model import TensorProductScoreModel as CGScoreModel
from utils.diffusion_utils import get_timestep_embedding
from spyrmsd import rmsd, molecule


def get_obrmsd(mol1_path, mol2_path, cache_name=None):
    cache_name = datetime.now().strftime('date%d-%m_time%H-%M-%S.%f') if cache_name is None else cache_name
    os.makedirs(".openbabel_cache", exist_ok=True)
    if not isinstance(mol1_path, str):
        MolToPDBFile(mol1_path, '.openbabel_cache/obrmsd_mol1_cache.pdb')
        mol1_path = '.openbabel_cache/obrmsd_mol1_cache.pdb'
    if not isinstance(mol2_path, str):
        MolToPDBFile(mol2_path, '.openbabel_cache/obrmsd_mol2_cache.pdb')
        mol2_path = '.openbabel_cache/obrmsd_mol2_cache.pdb'
    with warnings.catch_warnings():
        warnings.simplefilter("ignore")
        return_code = subprocess.run(f"obrms {mol1_path} {mol2_path} > .openbabel_cache/obrmsd_{cache_name}.rmsd",
                                     shell=True)
        print(return_code)
    obrms_output = read_strings_from_txt(f".openbabel_cache/obrmsd_{cache_name}.rmsd")
    rmsds = [line.split(" ")[-1] for line in obrms_output]
    return np.array(rmsds, dtype=np.float)


def remove_all_hs(mol):
    params = Chem.RemoveHsParameters()
    params.removeAndTrackIsotopes = True
    params.removeDefiningBondStereo = True
    params.removeDegreeZero = True
    params.removeDummyNeighbors = True
    params.removeHigherDegrees = True
    params.removeHydrides = True
    params.removeInSGroups = True
    params.removeIsotopes = True
    params.removeMapped = True
    params.removeNonimplicit = True
    params.removeOnlyHNeighbors = True
    params.removeWithQuery = True
    params.removeWithWedgedBond = True
    return RemoveHs(mol, params)


def read_strings_from_txt(path):
    # every line will be one element of the returned list
    with open(path) as file:
        lines = file.readlines()
        return [line.rstrip() for line in lines]


def save_yaml_file(path, content):
    assert isinstance(path, str), f'path must be a string, got {path} which is a {type(path)}'
    content = yaml.dump(data=content)
    if '/' in path and os.path.dirname(path) and not os.path.exists(os.path.dirname(path)):
        os.makedirs(os.path.dirname(path))
    with open(path, 'w') as f:
        f.write(content)


def get_optimizer_and_scheduler(args, model, scheduler_mode='min'):
    optimizer = torch.optim.Adam(filter(lambda p: p.requires_grad, model.parameters()), lr=args.lr, weight_decay=args.w_decay)

    if args.scheduler == 'plateau':
        scheduler = torch.optim.lr_scheduler.ReduceLROnPlateau(optimizer, mode=scheduler_mode, factor=0.7,
                                                               patience=args.scheduler_patience, min_lr=args.lr / 100)
    else:
        print('No scheduler')
        scheduler = None

    return optimizer, scheduler


def get_model(args, device, t_to_sigma, no_parallel=False, confidence_mode=False):
    if 'all_atoms' in args and args.all_atoms:
        model_class = AAScoreModel
    else:
        model_class = CGScoreModel

    timestep_emb_func = get_timestep_embedding(
        embedding_type=args.embedding_type,
        embedding_dim=args.sigma_embed_dim,
        embedding_scale=args.embedding_scale)

    lm_embedding_type = None
    if args.esm_embeddings_path is not None: lm_embedding_type = 'esm'

    model = model_class(t_to_sigma=t_to_sigma,
                        device=device,
                        no_torsion=args.no_torsion,
                        timestep_emb_func=timestep_emb_func,
                        num_conv_layers=args.num_conv_layers,
                        lig_max_radius=args.max_radius,
                        scale_by_sigma=args.scale_by_sigma,
                        sigma_embed_dim=args.sigma_embed_dim,
                        ns=args.ns, nv=args.nv,
                        distance_embed_dim=args.distance_embed_dim,
                        cross_distance_embed_dim=args.cross_distance_embed_dim,
                        batch_norm=not args.no_batch_norm,
                        dropout=args.dropout,
                        use_second_order_repr=args.use_second_order_repr,
                        cross_max_distance=args.cross_max_distance,
                        dynamic_max_cross=args.dynamic_max_cross,
                        lm_embedding_type=lm_embedding_type,
                        confidence_mode=confidence_mode,
                        num_confidence_outputs=len(
                            args.rmsd_classification_cutoff) + 1 if 'rmsd_classification_cutoff' in args and isinstance(
                            args.rmsd_classification_cutoff, list) else 1)

    if device.type == 'cuda' and not no_parallel:
        model = DataParallel(model)
    model.to(device)
    return model


def get_symmetry_rmsd(mol, coords1, coords2, mol2=None):
    with time_limit(10):
        mol = molecule.Molecule.from_rdkit(mol)
        mol2 = molecule.Molecule.from_rdkit(mol2) if mol2 is not None else mol2
        mol2_atomicnums = mol2.atomicnums if mol2 is not None else mol.atomicnums
        mol2_adjacency_matrix = mol2.adjacency_matrix if mol2 is not None else mol.adjacency_matrix
        RMSD = rmsd.symmrmsd(
            coords1,
            coords2,
            mol.atomicnums,
            mol2_atomicnums,
            mol.adjacency_matrix,
            mol2_adjacency_matrix,
        )
        return RMSD


class TimeoutException(Exception): pass


@contextmanager
def time_limit(seconds):
    def signal_handler(signum, frame):
        raise TimeoutException("Timed out!")

    signal.signal(signal.SIGALRM, signal_handler)
    signal.alarm(seconds)
    try:
        yield
    finally:
        signal.alarm(0)


class ExponentialMovingAverage:
    """ from https://github.com/yang-song/score_sde_pytorch/blob/main/models/ema.py
    Maintains (exponential) moving average of a set of parameters. """

    def __init__(self, parameters, decay, use_num_updates=True):
        """
        Args:
          parameters: Iterable of `torch.nn.Parameter`; usually the result of
            `model.parameters()`.
          decay: The exponential decay.
          use_num_updates: Whether to use number of updates when computing
            averages.
        """
        if decay < 0.0 or decay > 1.0:
            raise ValueError('Decay must be between 0 and 1')
        self.decay = decay
        self.num_updates = 0 if use_num_updates else None
        self.shadow_params = [p.clone().detach()
                              for p in parameters if p.requires_grad]
        self.collected_params = []

    def update(self, parameters):
        """
        Update currently maintained parameters.
        Call this every time the parameters are updated, such as the result of
        the `optimizer.step()` call.
        Args:
          parameters: Iterable of `torch.nn.Parameter`; usually the same set of
            parameters used to initialize this object.
        """
        decay = self.decay
        if self.num_updates is not None:
            self.num_updates += 1
            decay = min(decay, (1 + self.num_updates) / (10 + self.num_updates))
        one_minus_decay = 1.0 - decay
        with torch.no_grad():
            parameters = [p for p in parameters if p.requires_grad]
            for s_param, param in zip(self.shadow_params, parameters):
                s_param.sub_(one_minus_decay * (s_param - param))

    def copy_to(self, parameters):
        """
        Copy current parameters into given collection of parameters.
        Args:
          parameters: Iterable of `torch.nn.Parameter`; the parameters to be
            updated with the stored moving averages.
        """
        parameters = [p for p in parameters if p.requires_grad]
        for s_param, param in zip(self.shadow_params, parameters):
            if param.requires_grad:
                param.data.copy_(s_param.data)

    def store(self, parameters):
        """
        Save the current parameters for restoring later.
        Args:
          parameters: Iterable of `torch.nn.Parameter`; the parameters to be
            temporarily stored.
        """
        self.collected_params = [param.clone() for param in parameters]

    def restore(self, parameters):
        """
        Restore the parameters stored with the `store` method.
        Useful to validate the model with EMA parameters without affecting the
        original optimization process. Store the parameters before the
        `copy_to` method. After validation (or model saving), use this to
        restore the former parameters.
        Args:
          parameters: Iterable of `torch.nn.Parameter`; the parameters to be
            updated with the stored parameters.
        """
        for c_param, param in zip(self.collected_params, parameters):
            param.data.copy_(c_param.data)

    def state_dict(self):
        return dict(decay=self.decay, num_updates=self.num_updates,
                    shadow_params=self.shadow_params)

    def load_state_dict(self, state_dict, device):
        self.decay = state_dict['decay']
        self.num_updates = state_dict['num_updates']
        self.shadow_params = [tensor.to(device) for tensor in state_dict['shadow_params']]