Spaces:
Running
on
T4
Running
on
T4
File size: 9,652 Bytes
4a3f787 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 |
import os
import subprocess
import warnings
from datetime import datetime
import signal
from contextlib import contextmanager
import numpy as np
import torch
import yaml
from rdkit import Chem
from rdkit.Chem import RemoveHs, MolToPDBFile
from torch_geometric.nn.data_parallel import DataParallel
from models.all_atom_score_model import TensorProductScoreModel as AAScoreModel
from models.score_model import TensorProductScoreModel as CGScoreModel
from utils.diffusion_utils import get_timestep_embedding
from spyrmsd import rmsd, molecule
def get_obrmsd(mol1_path, mol2_path, cache_name=None):
cache_name = datetime.now().strftime('date%d-%m_time%H-%M-%S.%f') if cache_name is None else cache_name
os.makedirs(".openbabel_cache", exist_ok=True)
if not isinstance(mol1_path, str):
MolToPDBFile(mol1_path, '.openbabel_cache/obrmsd_mol1_cache.pdb')
mol1_path = '.openbabel_cache/obrmsd_mol1_cache.pdb'
if not isinstance(mol2_path, str):
MolToPDBFile(mol2_path, '.openbabel_cache/obrmsd_mol2_cache.pdb')
mol2_path = '.openbabel_cache/obrmsd_mol2_cache.pdb'
with warnings.catch_warnings():
warnings.simplefilter("ignore")
return_code = subprocess.run(f"obrms {mol1_path} {mol2_path} > .openbabel_cache/obrmsd_{cache_name}.rmsd",
shell=True)
print(return_code)
obrms_output = read_strings_from_txt(f".openbabel_cache/obrmsd_{cache_name}.rmsd")
rmsds = [line.split(" ")[-1] for line in obrms_output]
return np.array(rmsds, dtype=np.float)
def remove_all_hs(mol):
params = Chem.RemoveHsParameters()
params.removeAndTrackIsotopes = True
params.removeDefiningBondStereo = True
params.removeDegreeZero = True
params.removeDummyNeighbors = True
params.removeHigherDegrees = True
params.removeHydrides = True
params.removeInSGroups = True
params.removeIsotopes = True
params.removeMapped = True
params.removeNonimplicit = True
params.removeOnlyHNeighbors = True
params.removeWithQuery = True
params.removeWithWedgedBond = True
return RemoveHs(mol, params)
def read_strings_from_txt(path):
# every line will be one element of the returned list
with open(path) as file:
lines = file.readlines()
return [line.rstrip() for line in lines]
def save_yaml_file(path, content):
assert isinstance(path, str), f'path must be a string, got {path} which is a {type(path)}'
content = yaml.dump(data=content)
if '/' in path and os.path.dirname(path) and not os.path.exists(os.path.dirname(path)):
os.makedirs(os.path.dirname(path))
with open(path, 'w') as f:
f.write(content)
def get_optimizer_and_scheduler(args, model, scheduler_mode='min'):
optimizer = torch.optim.Adam(filter(lambda p: p.requires_grad, model.parameters()), lr=args.lr, weight_decay=args.w_decay)
if args.scheduler == 'plateau':
scheduler = torch.optim.lr_scheduler.ReduceLROnPlateau(optimizer, mode=scheduler_mode, factor=0.7,
patience=args.scheduler_patience, min_lr=args.lr / 100)
else:
print('No scheduler')
scheduler = None
return optimizer, scheduler
def get_model(args, device, t_to_sigma, no_parallel=False, confidence_mode=False):
if 'all_atoms' in args and args.all_atoms:
model_class = AAScoreModel
else:
model_class = CGScoreModel
timestep_emb_func = get_timestep_embedding(
embedding_type=args.embedding_type,
embedding_dim=args.sigma_embed_dim,
embedding_scale=args.embedding_scale)
lm_embedding_type = None
if args.esm_embeddings_path is not None: lm_embedding_type = 'esm'
model = model_class(t_to_sigma=t_to_sigma,
device=device,
no_torsion=args.no_torsion,
timestep_emb_func=timestep_emb_func,
num_conv_layers=args.num_conv_layers,
lig_max_radius=args.max_radius,
scale_by_sigma=args.scale_by_sigma,
sigma_embed_dim=args.sigma_embed_dim,
ns=args.ns, nv=args.nv,
distance_embed_dim=args.distance_embed_dim,
cross_distance_embed_dim=args.cross_distance_embed_dim,
batch_norm=not args.no_batch_norm,
dropout=args.dropout,
use_second_order_repr=args.use_second_order_repr,
cross_max_distance=args.cross_max_distance,
dynamic_max_cross=args.dynamic_max_cross,
lm_embedding_type=lm_embedding_type,
confidence_mode=confidence_mode,
num_confidence_outputs=len(
args.rmsd_classification_cutoff) + 1 if 'rmsd_classification_cutoff' in args and isinstance(
args.rmsd_classification_cutoff, list) else 1)
if device.type == 'cuda' and not no_parallel:
model = DataParallel(model)
model.to(device)
return model
def get_symmetry_rmsd(mol, coords1, coords2, mol2=None):
with time_limit(10):
mol = molecule.Molecule.from_rdkit(mol)
mol2 = molecule.Molecule.from_rdkit(mol2) if mol2 is not None else mol2
mol2_atomicnums = mol2.atomicnums if mol2 is not None else mol.atomicnums
mol2_adjacency_matrix = mol2.adjacency_matrix if mol2 is not None else mol.adjacency_matrix
RMSD = rmsd.symmrmsd(
coords1,
coords2,
mol.atomicnums,
mol2_atomicnums,
mol.adjacency_matrix,
mol2_adjacency_matrix,
)
return RMSD
class TimeoutException(Exception): pass
@contextmanager
def time_limit(seconds):
def signal_handler(signum, frame):
raise TimeoutException("Timed out!")
signal.signal(signal.SIGALRM, signal_handler)
signal.alarm(seconds)
try:
yield
finally:
signal.alarm(0)
class ExponentialMovingAverage:
""" from https://github.com/yang-song/score_sde_pytorch/blob/main/models/ema.py
Maintains (exponential) moving average of a set of parameters. """
def __init__(self, parameters, decay, use_num_updates=True):
"""
Args:
parameters: Iterable of `torch.nn.Parameter`; usually the result of
`model.parameters()`.
decay: The exponential decay.
use_num_updates: Whether to use number of updates when computing
averages.
"""
if decay < 0.0 or decay > 1.0:
raise ValueError('Decay must be between 0 and 1')
self.decay = decay
self.num_updates = 0 if use_num_updates else None
self.shadow_params = [p.clone().detach()
for p in parameters if p.requires_grad]
self.collected_params = []
def update(self, parameters):
"""
Update currently maintained parameters.
Call this every time the parameters are updated, such as the result of
the `optimizer.step()` call.
Args:
parameters: Iterable of `torch.nn.Parameter`; usually the same set of
parameters used to initialize this object.
"""
decay = self.decay
if self.num_updates is not None:
self.num_updates += 1
decay = min(decay, (1 + self.num_updates) / (10 + self.num_updates))
one_minus_decay = 1.0 - decay
with torch.no_grad():
parameters = [p for p in parameters if p.requires_grad]
for s_param, param in zip(self.shadow_params, parameters):
s_param.sub_(one_minus_decay * (s_param - param))
def copy_to(self, parameters):
"""
Copy current parameters into given collection of parameters.
Args:
parameters: Iterable of `torch.nn.Parameter`; the parameters to be
updated with the stored moving averages.
"""
parameters = [p for p in parameters if p.requires_grad]
for s_param, param in zip(self.shadow_params, parameters):
if param.requires_grad:
param.data.copy_(s_param.data)
def store(self, parameters):
"""
Save the current parameters for restoring later.
Args:
parameters: Iterable of `torch.nn.Parameter`; the parameters to be
temporarily stored.
"""
self.collected_params = [param.clone() for param in parameters]
def restore(self, parameters):
"""
Restore the parameters stored with the `store` method.
Useful to validate the model with EMA parameters without affecting the
original optimization process. Store the parameters before the
`copy_to` method. After validation (or model saving), use this to
restore the former parameters.
Args:
parameters: Iterable of `torch.nn.Parameter`; the parameters to be
updated with the stored parameters.
"""
for c_param, param in zip(self.collected_params, parameters):
param.data.copy_(c_param.data)
def state_dict(self):
return dict(decay=self.decay, num_updates=self.num_updates,
shadow_params=self.shadow_params)
def load_state_dict(self, state_dict, device):
self.decay = state_dict['decay']
self.num_updates = state_dict['num_updates']
self.shadow_params = [tensor.to(device) for tensor in state_dict['shadow_params']]
|