File size: 11,951 Bytes
4a3f787
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
import copy

import numpy as np
from torch_geometric.loader import DataLoader
from tqdm import tqdm

from confidence.dataset import ListDataset
from utils import so3, torus
from utils.sampling import randomize_position, sampling
import torch
from utils.diffusion_utils import get_t_schedule


def loss_function(tr_pred, rot_pred, tor_pred, data, t_to_sigma, device, tr_weight=1, rot_weight=1,
                  tor_weight=1, apply_mean=True, no_torsion=False):
    tr_sigma, rot_sigma, tor_sigma = t_to_sigma(
        *[torch.cat([d.complex_t[noise_type] for d in data]) if device.type == 'cuda' else data.complex_t[noise_type]
          for noise_type in ['tr', 'rot', 'tor']])
    mean_dims = (0, 1) if apply_mean else 1

    # translation component
    tr_score = torch.cat([d.tr_score for d in data], dim=0) if device.type == 'cuda' else data.tr_score
    tr_sigma = tr_sigma.unsqueeze(-1)
    tr_loss = ((tr_pred.cpu() - tr_score) ** 2 * tr_sigma ** 2).mean(dim=mean_dims)
    tr_base_loss = (tr_score ** 2 * tr_sigma ** 2).mean(dim=mean_dims).detach()

    # rotation component
    rot_score = torch.cat([d.rot_score for d in data], dim=0) if device.type == 'cuda' else data.rot_score
    rot_score_norm = so3.score_norm(rot_sigma.cpu()).unsqueeze(-1)
    rot_loss = (((rot_pred.cpu() - rot_score) / rot_score_norm) ** 2).mean(dim=mean_dims)
    rot_base_loss = ((rot_score / rot_score_norm) ** 2).mean(dim=mean_dims).detach()

    # torsion component
    if not no_torsion:
        edge_tor_sigma = torch.from_numpy(
            np.concatenate([d.tor_sigma_edge for d in data] if device.type == 'cuda' else data.tor_sigma_edge))
        tor_score = torch.cat([d.tor_score for d in data], dim=0) if device.type == 'cuda' else data.tor_score
        tor_score_norm2 = torch.tensor(torus.score_norm(edge_tor_sigma.cpu().numpy())).float()
        tor_loss = ((tor_pred.cpu() - tor_score) ** 2 / tor_score_norm2)
        tor_base_loss = ((tor_score ** 2 / tor_score_norm2)).detach()
        if apply_mean:
            tor_loss, tor_base_loss = tor_loss.mean() * torch.ones(1, dtype=torch.float), tor_base_loss.mean() * torch.ones(1, dtype=torch.float)
        else:
            index = torch.cat([torch.ones(d['ligand'].edge_mask.sum()) * i for i, d in
                               enumerate(data)]).long() if device.type == 'cuda' else data['ligand'].batch[
                data['ligand', 'ligand'].edge_index[0][data['ligand'].edge_mask]]
            num_graphs = len(data) if device.type == 'cuda' else data.num_graphs
            t_l, t_b_l, c = torch.zeros(num_graphs), torch.zeros(num_graphs), torch.zeros(num_graphs)
            c.index_add_(0, index, torch.ones(tor_loss.shape))
            c = c + 0.0001
            t_l.index_add_(0, index, tor_loss)
            t_b_l.index_add_(0, index, tor_base_loss)
            tor_loss, tor_base_loss = t_l / c, t_b_l / c
    else:
        if apply_mean:
            tor_loss, tor_base_loss = torch.zeros(1, dtype=torch.float), torch.zeros(1, dtype=torch.float)
        else:
            tor_loss, tor_base_loss = torch.zeros(len(rot_loss), dtype=torch.float), torch.zeros(len(rot_loss), dtype=torch.float)

    loss = tr_loss * tr_weight + rot_loss * rot_weight + tor_loss * tor_weight
    return loss, tr_loss.detach(), rot_loss.detach(), tor_loss.detach(), tr_base_loss, rot_base_loss, tor_base_loss


class AverageMeter():
    def __init__(self, types, unpooled_metrics=False, intervals=1):
        self.types = types
        self.intervals = intervals
        self.count = 0 if intervals == 1 else torch.zeros(len(types), intervals)
        self.acc = {t: torch.zeros(intervals) for t in types}
        self.unpooled_metrics = unpooled_metrics

    def add(self, vals, interval_idx=None):
        if self.intervals == 1:
            self.count += 1 if vals[0].dim() == 0 else len(vals[0])
            for type_idx, v in enumerate(vals):
                self.acc[self.types[type_idx]] += v.sum() if self.unpooled_metrics else v
        else:
            for type_idx, v in enumerate(vals):
                self.count[type_idx].index_add_(0, interval_idx[type_idx], torch.ones(len(v)))
                if not torch.allclose(v, torch.tensor(0.0)):
                    self.acc[self.types[type_idx]].index_add_(0, interval_idx[type_idx], v)

    def summary(self):
        if self.intervals == 1:
            out = {k: v.item() / self.count for k, v in self.acc.items()}
            return out
        else:
            out = {}
            for i in range(self.intervals):
                for type_idx, k in enumerate(self.types):
                    out['int' + str(i) + '_' + k] = (
                            list(self.acc.values())[type_idx][i] / self.count[type_idx][i]).item()
            return out


def train_epoch(model, loader, optimizer, device, t_to_sigma, loss_fn, ema_weigths):
    model.train()
    meter = AverageMeter(['loss', 'tr_loss', 'rot_loss', 'tor_loss', 'tr_base_loss', 'rot_base_loss', 'tor_base_loss'])

    for data in tqdm(loader, total=len(loader)):
        if device.type == 'cuda' and len(data) == 1 or device.type == 'cpu' and data.num_graphs == 1:
            print("Skipping batch of size 1 since otherwise batchnorm would not work.")
        optimizer.zero_grad()
        try:
            tr_pred, rot_pred, tor_pred = model(data)
            loss, tr_loss, rot_loss, tor_loss, tr_base_loss, rot_base_loss, tor_base_loss = \
                loss_fn(tr_pred, rot_pred, tor_pred, data=data, t_to_sigma=t_to_sigma, device=device)
            loss.backward()
            optimizer.step()
            ema_weigths.update(model.parameters())
            meter.add([loss.cpu().detach(), tr_loss, rot_loss, tor_loss, tr_base_loss, rot_base_loss, tor_base_loss])
        except RuntimeError as e:
            if 'out of memory' in str(e):
                print('| WARNING: ran out of memory, skipping batch')
                for p in model.parameters():
                    if p.grad is not None:
                        del p.grad  # free some memory
                torch.cuda.empty_cache()
                continue
            elif 'Input mismatch' in str(e):
                print('| WARNING: weird torch_cluster error, skipping batch')
                for p in model.parameters():
                    if p.grad is not None:
                        del p.grad  # free some memory
                torch.cuda.empty_cache()
                continue
            else:
                raise e

    return meter.summary()


def test_epoch(model, loader, device, t_to_sigma, loss_fn, test_sigma_intervals=False):
    model.eval()
    meter = AverageMeter(['loss', 'tr_loss', 'rot_loss', 'tor_loss', 'tr_base_loss', 'rot_base_loss', 'tor_base_loss'],
                         unpooled_metrics=True)

    if test_sigma_intervals:
        meter_all = AverageMeter(
            ['loss', 'tr_loss', 'rot_loss', 'tor_loss', 'tr_base_loss', 'rot_base_loss', 'tor_base_loss'],
            unpooled_metrics=True, intervals=10)

    for data in tqdm(loader, total=len(loader)):
        try:
            with torch.no_grad():
                tr_pred, rot_pred, tor_pred = model(data)

            loss, tr_loss, rot_loss, tor_loss, tr_base_loss, rot_base_loss, tor_base_loss = \
                loss_fn(tr_pred, rot_pred, tor_pred, data=data, t_to_sigma=t_to_sigma, apply_mean=False, device=device)
            meter.add([loss.cpu().detach(), tr_loss, rot_loss, tor_loss, tr_base_loss, rot_base_loss, tor_base_loss])

            if test_sigma_intervals > 0:
                complex_t_tr, complex_t_rot, complex_t_tor = [torch.cat([d.complex_t[noise_type] for d in data]) for
                                                              noise_type in ['tr', 'rot', 'tor']]
                sigma_index_tr = torch.round(complex_t_tr.cpu() * (10 - 1)).long()
                sigma_index_rot = torch.round(complex_t_rot.cpu() * (10 - 1)).long()
                sigma_index_tor = torch.round(complex_t_tor.cpu() * (10 - 1)).long()
                meter_all.add(
                    [loss.cpu().detach(), tr_loss, rot_loss, tor_loss, tr_base_loss, rot_base_loss, tor_base_loss],
                    [sigma_index_tr, sigma_index_tr, sigma_index_rot, sigma_index_tor, sigma_index_tr, sigma_index_rot,
                     sigma_index_tor, sigma_index_tr])

        except RuntimeError as e:
            if 'out of memory' in str(e):
                print('| WARNING: ran out of memory, skipping batch')
                for p in model.parameters():
                    if p.grad is not None:
                        del p.grad  # free some memory
                torch.cuda.empty_cache()
                continue
            elif 'Input mismatch' in str(e):
                print('| WARNING: weird torch_cluster error, skipping batch')
                for p in model.parameters():
                    if p.grad is not None:
                        del p.grad  # free some memory
                torch.cuda.empty_cache()
                continue
            else:
                raise e

    out = meter.summary()
    if test_sigma_intervals > 0: out.update(meter_all.summary())
    return out


def inference_epoch(model, complex_graphs, device, t_to_sigma, args):
    t_schedule = get_t_schedule(inference_steps=args.inference_steps)
    tr_schedule, rot_schedule, tor_schedule = t_schedule, t_schedule, t_schedule

    dataset = ListDataset(complex_graphs)
    loader = DataLoader(dataset=dataset, batch_size=1, shuffle=False)
    rmsds = []

    for orig_complex_graph in tqdm(loader):
        data_list = [copy.deepcopy(orig_complex_graph)]
        randomize_position(data_list, args.no_torsion, False, args.tr_sigma_max)

        predictions_list = None
        failed_convergence_counter = 0
        while predictions_list == None:
            try:
                predictions_list, confidences = sampling(data_list=data_list, model=model.module if device.type=='cuda' else model,
                                                         inference_steps=args.inference_steps,
                                                         tr_schedule=tr_schedule, rot_schedule=rot_schedule,
                                                         tor_schedule=tor_schedule,
                                                         device=device, t_to_sigma=t_to_sigma, model_args=args)
            except Exception as e:
                if 'failed to converge' in str(e):
                    failed_convergence_counter += 1
                    if failed_convergence_counter > 5:
                        print('| WARNING: SVD failed to converge 5 times - skipping the complex')
                        break
                    print('| WARNING: SVD failed to converge - trying again with a new sample')
                else:
                    raise e
        if failed_convergence_counter > 5: continue
        if args.no_torsion:
            orig_complex_graph['ligand'].orig_pos = (orig_complex_graph['ligand'].pos.cpu().numpy() +
                                                     orig_complex_graph.original_center.cpu().numpy())

        filterHs = torch.not_equal(predictions_list[0]['ligand'].x[:, 0], 0).cpu().numpy()

        if isinstance(orig_complex_graph['ligand'].orig_pos, list):
            orig_complex_graph['ligand'].orig_pos = orig_complex_graph['ligand'].orig_pos[0]

        ligand_pos = np.asarray(
            [complex_graph['ligand'].pos.cpu().numpy()[filterHs] for complex_graph in predictions_list])
        orig_ligand_pos = np.expand_dims(
            orig_complex_graph['ligand'].orig_pos[filterHs] - orig_complex_graph.original_center.cpu().numpy(), axis=0)
        rmsd = np.sqrt(((ligand_pos - orig_ligand_pos) ** 2).sum(axis=2).mean(axis=1))
        rmsds.append(rmsd)

    rmsds = np.array(rmsds)
    losses = {'rmsds_lt2': (100 * (rmsds < 2).sum() / len(rmsds)),
              'rmsds_lt5': (100 * (rmsds < 5).sum() / len(rmsds))}
    return losses