Spaces:
Running
on
T4
Running
on
T4
File size: 35,716 Bytes
4a3f787 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 |
import copy
import os
import torch
import time
from argparse import ArgumentParser, Namespace, FileType
from datetime import datetime
from functools import partial
import numpy as np
import wandb
from biopandas.pdb import PandasPdb
from rdkit import RDLogger
from torch_geometric.loader import DataLoader
from datasets.pdbbind import PDBBind, read_mol
from utils.diffusion_utils import t_to_sigma as t_to_sigma_compl, get_t_schedule
from utils.sampling import randomize_position, sampling
from utils.utils import get_model, get_symmetry_rmsd, remove_all_hs, read_strings_from_txt, ExponentialMovingAverage
from utils.visualise import PDBFile
from tqdm import tqdm
RDLogger.DisableLog('rdApp.*')
import yaml
cache_name = datetime.now().strftime('date%d-%m_time%H-%M-%S.%f')
parser = ArgumentParser()
parser.add_argument('--config', type=FileType(mode='r'), default=None)
parser.add_argument('--model_dir', type=str, default='workdir', help='Path to folder with trained score model and hyperparameters')
parser.add_argument('--ckpt', type=str, default='best_model.pt', help='Checkpoint to use inside the folder')
parser.add_argument('--confidence_model_dir', type=str, default=None, help='Path to folder with trained confidence model and hyperparameters')
parser.add_argument('--confidence_ckpt', type=str, default='best_model.pt', help='Checkpoint to use inside the folder')
parser.add_argument('--affinity_model_dir', type=str, default=None, help='Path to folder with trained affinity model and hyperparameters')
parser.add_argument('--affinity_ckpt', type=str, default='best_model.pt', help='Checkpoint to use inside the folder')
parser.add_argument('--num_cpu', type=int, default=None, help='if this is a number instead of none, the max number of cpus used by torch will be set to this.')
parser.add_argument('--run_name', type=str, default='test', help='')
parser.add_argument('--project', type=str, default='ligbind_inf', help='')
parser.add_argument('--out_dir', type=str, default=None, help='Where to save results to')
parser.add_argument('--batch_size', type=int, default=10, help='Number of poses to sample in parallel')
parser.add_argument('--cache_path', type=str, default='data/cacheNew', help='Folder from where to load/restore cached dataset')
parser.add_argument('--data_dir', type=str, default='data/PDBBind_processed/', help='Folder containing original structures')
parser.add_argument('--split_path', type=str, default='data/splits/timesplit_no_lig_overlap_val', help='Path of file defining the split')
parser.add_argument('--no_model', action='store_true', default=False, help='Whether to return seed conformer without running model')
parser.add_argument('--no_random', action='store_true', default=False, help='Whether to add randomness in diffusion steps')
parser.add_argument('--no_final_step_noise', action='store_true', default=False, help='Whether to add noise after the final step')
parser.add_argument('--ode', action='store_true', default=False, help='Whether to run the probability flow ODE')
parser.add_argument('--wandb', action='store_true', default=False, help='')
parser.add_argument('--inference_steps', type=int, default=20, help='Number of denoising steps')
parser.add_argument('--limit_complexes', type=int, default=0, help='Limit to the number of complexes')
parser.add_argument('--num_workers', type=int, default=1, help='Number of workers for dataset creation')
parser.add_argument('--tqdm', action='store_true', default=False, help='Whether to show progress bar')
parser.add_argument('--save_visualisation', action='store_true', default=False, help='Whether to save visualizations')
parser.add_argument('--samples_per_complex', type=int, default=1, help='Number of poses to sample for each complex')
parser.add_argument('--actual_steps', type=int, default=None, help='')
args = parser.parse_args()
if args.config:
config_dict = yaml.load(args.config, Loader=yaml.FullLoader)
arg_dict = args.__dict__
for key, value in config_dict.items():
if isinstance(value, list):
for v in value:
arg_dict[key].append(v)
else:
arg_dict[key] = value
if args.out_dir is None: args.out_dir = f'inference_out_dir_not_specified/{args.run_name}'
os.makedirs(args.out_dir, exist_ok=True)
with open(f'{args.model_dir}/model_parameters.yml') as f:
score_model_args = Namespace(**yaml.full_load(f))
if args.confidence_model_dir is not None:
with open(f'{args.confidence_model_dir}/model_parameters.yml') as f:
confidence_args = Namespace(**yaml.full_load(f))
if not os.path.exists(confidence_args.original_model_dir):
print("Path does not exist: ", confidence_args.original_model_dir)
confidence_args.original_model_dir = os.path.join(*confidence_args.original_model_dir.split('/')[-2:])
print('instead trying path: ', confidence_args.original_model_dir)
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
test_dataset = PDBBind(transform=None, root=args.data_dir, limit_complexes=args.limit_complexes,
receptor_radius=score_model_args.receptor_radius,
cache_path=args.cache_path, split_path=args.split_path,
remove_hs=score_model_args.remove_hs, max_lig_size=None,
c_alpha_max_neighbors=score_model_args.c_alpha_max_neighbors,
matching=not score_model_args.no_torsion, keep_original=True,
popsize=score_model_args.matching_popsize,
maxiter=score_model_args.matching_maxiter,
all_atoms=score_model_args.all_atoms,
atom_radius=score_model_args.atom_radius,
atom_max_neighbors=score_model_args.atom_max_neighbors,
esm_embeddings_path=score_model_args.esm_embeddings_path,
require_ligand=True,
num_workers=args.num_workers)
test_loader = DataLoader(dataset=test_dataset, batch_size=1, shuffle=False)
if args.confidence_model_dir is not None:
if not (confidence_args.use_original_model_cache or confidence_args.transfer_weights):
# if the confidence model uses the same type of data as the original model then we do not need this dataset and can just use the complexes
print('HAPPENING | confidence model uses different type of graphs than the score model. Loading (or creating if not existing) the data for the confidence model now.')
confidence_test_dataset = PDBBind(transform=None, root=args.data_dir, limit_complexes=args.limit_complexes,
receptor_radius=confidence_args.receptor_radius,
cache_path=args.cache_path, split_path=args.split_path,
remove_hs=confidence_args.remove_hs, max_lig_size=None, c_alpha_max_neighbors=confidence_args.c_alpha_max_neighbors,
matching=not confidence_args.no_torsion, keep_original=True,
popsize=confidence_args.matching_popsize,
maxiter=confidence_args.matching_maxiter,
all_atoms=confidence_args.all_atoms,
atom_radius=confidence_args.atom_radius,
atom_max_neighbors=confidence_args.atom_max_neighbors,
esm_embeddings_path= confidence_args.esm_embeddings_path, require_ligand=True,
num_workers=args.num_workers)
confidence_complex_dict = {d.name: d for d in confidence_test_dataset}
t_to_sigma = partial(t_to_sigma_compl, args=score_model_args)
if not args.no_model:
model = get_model(score_model_args, device, t_to_sigma=t_to_sigma, no_parallel=True)
state_dict = torch.load(f'{args.model_dir}/{args.ckpt}', map_location=torch.device('cpu'))
if args.ckpt == 'last_model.pt':
model_state_dict = state_dict['model']
ema_weights_state = state_dict['ema_weights']
model.load_state_dict(model_state_dict, strict=True)
ema_weights = ExponentialMovingAverage(model.parameters(), decay=score_model_args.ema_rate)
ema_weights.load_state_dict(ema_weights_state, device=device)
ema_weights.copy_to(model.parameters())
else:
model.load_state_dict(state_dict, strict=True)
model = model.to(device)
model.eval()
if args.confidence_model_dir is not None:
if confidence_args.transfer_weights:
with open(f'{confidence_args.original_model_dir}/model_parameters.yml') as f:
confidence_model_args = Namespace(**yaml.full_load(f))
else:
confidence_model_args = confidence_args
confidence_model = get_model(confidence_model_args, device, t_to_sigma=t_to_sigma, no_parallel=True,
confidence_mode=True)
state_dict = torch.load(f'{args.confidence_model_dir}/{args.confidence_ckpt}', map_location=torch.device('cpu'))
confidence_model.load_state_dict(state_dict, strict=True)
confidence_model = confidence_model.to(device)
confidence_model.eval()
else:
confidence_model = None
confidence_args = None
confidence_model_args = None
if args.wandb:
run = wandb.init(
entity='entity',
settings=wandb.Settings(start_method="fork"),
project=args.project,
name=args.run_name,
config=args
)
tr_schedule = get_t_schedule(inference_steps=args.inference_steps)
rot_schedule = tr_schedule
tor_schedule = tr_schedule
print('t schedule', tr_schedule)
rmsds_list, obrmsds, centroid_distances_list, failures, skipped, min_cross_distances_list, base_min_cross_distances_list, confidences_list, names_list = [], [], [], 0, 0, [], [], [], []
true_affinities_list, pred_affinities_list, run_times, min_self_distances_list, without_rec_overlap_list = [], [], [], [], []
N = args.samples_per_complex
names_no_rec_overlap = read_strings_from_txt(f'data/splits/timesplit_test_no_rec_overlap')
print('Size of test dataset: ', len(test_dataset))
for idx, orig_complex_graph in tqdm(enumerate(test_loader)):
if confidence_model is not None and not (confidence_args.use_original_model_cache or
confidence_args.transfer_weights) and orig_complex_graph.name[0] not in confidence_complex_dict.keys():
skipped += 1
print(f"HAPPENING | The confidence dataset did not contain {orig_complex_graph.name[0]}. We are skipping this complex.")
continue
success = 0
while not success: # keep trying in case of failure (sometimes stochastic)
try:
success = 1
data_list = [copy.deepcopy(orig_complex_graph) for _ in range(N)]
randomize_position(data_list, score_model_args.no_torsion, args.no_random, score_model_args.tr_sigma_max)
pdb = None
if args.save_visualisation:
visualization_list = []
for idx, graph in enumerate(data_list):
lig = read_mol(args.data_dir, graph['name'][0], remove_hs=score_model_args.remove_hs)
pdb = PDBFile(lig)
pdb.add(lig, 0, 0)
pdb.add((orig_complex_graph['ligand'].pos + orig_complex_graph.original_center).detach().cpu(), 1, 0)
pdb.add((graph['ligand'].pos + graph.original_center).detach().cpu(), part=1, order=1)
visualization_list.append(pdb)
else:
visualization_list = None
rec_path = os.path.join(args.data_dir, data_list[0]["name"][0], f'{data_list[0]["name"][0]}_protein_processed.pdb')
if not os.path.exists(rec_path):
rec_path = os.path.join(args.data_dir, data_list[0]["name"][0], f'{data_list[0]["name"][0]}_protein_obabel_reduce.pdb')
rec = PandasPdb().read_pdb(rec_path)
rec_df = rec.df['ATOM']
receptor_pos = rec_df[['x_coord', 'y_coord', 'z_coord']].to_numpy().squeeze().astype(
np.float32) - orig_complex_graph.original_center.cpu().numpy()
receptor_pos = np.tile(receptor_pos, (N, 1, 1))
start_time = time.time()
if not args.no_model:
if confidence_model is not None and not (
confidence_args.use_original_model_cache or confidence_args.transfer_weights):
confidence_data_list = [copy.deepcopy(confidence_complex_dict[orig_complex_graph.name[0]]) for _ in
range(N)]
else:
confidence_data_list = None
data_list, confidence = sampling(data_list=data_list, model=model,
inference_steps=args.actual_steps if args.actual_steps is not None else args.inference_steps,
tr_schedule=tr_schedule, rot_schedule=rot_schedule,
tor_schedule=tor_schedule,
device=device, t_to_sigma=t_to_sigma, model_args=score_model_args,
no_random=args.no_random,
ode=args.ode, visualization_list=visualization_list,
confidence_model=confidence_model,
confidence_data_list=confidence_data_list,
confidence_model_args=confidence_model_args,
batch_size=args.batch_size,
no_final_step_noise=args.no_final_step_noise)
run_times.append(time.time() - start_time)
if score_model_args.no_torsion: orig_complex_graph['ligand'].orig_pos = (orig_complex_graph['ligand'].pos.cpu().numpy() + orig_complex_graph.original_center.cpu().numpy())
filterHs = torch.not_equal(data_list[0]['ligand'].x[:, 0], 0).cpu().numpy()
if isinstance(orig_complex_graph['ligand'].orig_pos, list):
orig_complex_graph['ligand'].orig_pos = orig_complex_graph['ligand'].orig_pos[0]
ligand_pos = np.asarray(
[complex_graph['ligand'].pos.cpu().numpy()[filterHs] for complex_graph in data_list])
orig_ligand_pos = np.expand_dims(
orig_complex_graph['ligand'].orig_pos[filterHs] - orig_complex_graph.original_center.cpu().numpy(),
axis=0)
try:
mol = remove_all_hs(orig_complex_graph.mol[0])
rmsd = get_symmetry_rmsd(mol, orig_ligand_pos[0], [l for l in ligand_pos])
except Exception as e:
print("Using non corrected RMSD because of the error", e)
rmsd = np.sqrt(((ligand_pos - orig_ligand_pos) ** 2).sum(axis=2).mean(axis=1))
rmsds_list.append(rmsd)
centroid_distance = np.linalg.norm(ligand_pos.mean(axis=1) - orig_ligand_pos.mean(axis=1), axis=1)
if confidence is not None and isinstance(confidence_args.rmsd_classification_cutoff, list):
confidence = confidence[:, 0]
if confidence is not None:
confidence = confidence.cpu().numpy()
re_order = np.argsort(confidence)[::-1]
print(orig_complex_graph['name'], ' rmsd', np.around(rmsd, 1)[re_order], ' centroid distance',
np.around(centroid_distance, 1)[re_order], ' confidences ', np.around(confidence, 4)[re_order])
confidences_list.append(confidence)
else:
print(orig_complex_graph['name'], ' rmsd', np.around(rmsd, 1), ' centroid distance',
np.around(centroid_distance, 1))
centroid_distances_list.append(centroid_distance)
cross_distances = np.linalg.norm(receptor_pos[:, :, None, :] - ligand_pos[:, None, :, :], axis=-1)
min_cross_distances_list.append(np.min(cross_distances, axis=(1, 2)))
self_distances = np.linalg.norm(ligand_pos[:, :, None, :] - ligand_pos[:, None, :, :], axis=-1)
self_distances = np.where(np.eye(self_distances.shape[2]), np.inf, self_distances)
min_self_distances_list.append(np.min(self_distances, axis=(1, 2)))
base_cross_distances = np.linalg.norm(receptor_pos[:, :, None, :] - orig_ligand_pos[:, None, :, :], axis=-1)
base_min_cross_distances_list.append(np.min(base_cross_distances, axis=(1, 2)))
if args.save_visualisation:
if confidence is not None:
for rank, batch_idx in enumerate(re_order):
visualization_list[batch_idx].write(
f'{args.out_dir}/{data_list[batch_idx]["name"][0]}_{rank + 1}_{rmsd[batch_idx]:.1f}_{(confidence)[batch_idx]:.1f}.pdb')
else:
for rank, batch_idx in enumerate(np.argsort(rmsd)):
visualization_list[batch_idx].write(
f'{args.out_dir}/{data_list[batch_idx]["name"][0]}_{rank + 1}_{rmsd[batch_idx]:.1f}.pdb')
without_rec_overlap_list.append(1 if orig_complex_graph.name[0] in names_no_rec_overlap else 0)
names_list.append(orig_complex_graph.name[0])
except Exception as e:
print("Failed on", orig_complex_graph["name"], e)
failures += 1
success = 0
print('Performance without hydrogens included in the loss')
print(failures, "failures due to exceptions")
print(skipped, ' skipped because complex was not in confidence dataset')
performance_metrics = {}
for overlap in ['', 'no_overlap_']:
if 'no_overlap_' == overlap:
without_rec_overlap = np.array(without_rec_overlap_list, dtype=bool)
if without_rec_overlap.sum() == 0: continue
rmsds = np.array(rmsds_list)[without_rec_overlap]
min_self_distances = np.array(min_self_distances_list)[without_rec_overlap]
centroid_distances = np.array(centroid_distances_list)[without_rec_overlap]
confidences = np.array(confidences_list)[without_rec_overlap]
min_cross_distances = np.array(min_cross_distances_list)[without_rec_overlap]
base_min_cross_distances = np.array(base_min_cross_distances_list)[without_rec_overlap]
names = np.array(names_list)[without_rec_overlap]
else:
rmsds = np.array(rmsds_list)
min_self_distances = np.array(min_self_distances_list)
centroid_distances = np.array(centroid_distances_list)
confidences = np.array(confidences_list)
min_cross_distances = np.array(min_cross_distances_list)
base_min_cross_distances = np.array(base_min_cross_distances_list)
names = np.array(names_list)
run_times = np.array(run_times)
np.save(f'{args.out_dir}/{overlap}min_cross_distances.npy', min_cross_distances)
np.save(f'{args.out_dir}/{overlap}min_self_distances.npy', min_self_distances)
np.save(f'{args.out_dir}/{overlap}base_min_cross_distances.npy', base_min_cross_distances)
np.save(f'{args.out_dir}/{overlap}rmsds.npy', rmsds)
np.save(f'{args.out_dir}/{overlap}centroid_distances.npy', centroid_distances)
np.save(f'{args.out_dir}/{overlap}confidences.npy', confidences)
np.save(f'{args.out_dir}/{overlap}run_times.npy', run_times)
np.save(f'{args.out_dir}/{overlap}complex_names.npy', np.array(names))
performance_metrics.update({
f'{overlap}run_times_std': run_times.std().__round__(2),
f'{overlap}run_times_mean': run_times.mean().__round__(2),
f'{overlap}steric_clash_fraction': (
100 * (min_cross_distances < 0.4).sum() / len(min_cross_distances) / N).__round__(2),
f'{overlap}self_intersect_fraction': (
100 * (min_self_distances < 0.4).sum() / len(min_self_distances) / N).__round__(2),
f'{overlap}mean_rmsd': rmsds.mean(),
f'{overlap}rmsds_below_2': (100 * (rmsds < 2).sum() / len(rmsds) / N),
f'{overlap}rmsds_below_5': (100 * (rmsds < 5).sum() / len(rmsds) / N),
f'{overlap}rmsds_percentile_25': np.percentile(rmsds, 25).round(2),
f'{overlap}rmsds_percentile_50': np.percentile(rmsds, 50).round(2),
f'{overlap}rmsds_percentile_75': np.percentile(rmsds, 75).round(2),
f'{overlap}mean_centroid': centroid_distances.mean().__round__(2),
f'{overlap}centroid_below_2': (100 * (centroid_distances < 2).sum() / len(centroid_distances) / N).__round__(2),
f'{overlap}centroid_below_5': (100 * (centroid_distances < 5).sum() / len(centroid_distances) / N).__round__(2),
f'{overlap}centroid_percentile_25': np.percentile(centroid_distances, 25).round(2),
f'{overlap}centroid_percentile_50': np.percentile(centroid_distances, 50).round(2),
f'{overlap}centroid_percentile_75': np.percentile(centroid_distances, 75).round(2),
})
if N >= 5:
top5_rmsds = np.min(rmsds[:, :5], axis=1)
top5_centroid_distances = centroid_distances[
np.arange(rmsds.shape[0])[:, None], np.argsort(rmsds[:, :5], axis=1)][:, 0]
top5_min_cross_distances = min_cross_distances[
np.arange(rmsds.shape[0])[:, None], np.argsort(rmsds[:, :5], axis=1)][:, 0]
top5_min_self_distances = min_self_distances[
np.arange(rmsds.shape[0])[:, None], np.argsort(rmsds[:, :5], axis=1)][:, 0]
performance_metrics.update({
f'{overlap}top5_steric_clash_fraction': (
100 * (top5_min_cross_distances < 0.4).sum() / len(top5_min_cross_distances)).__round__(2),
f'{overlap}top5_self_intersect_fraction': (
100 * (top5_min_self_distances < 0.4).sum() / len(top5_min_self_distances)).__round__(2),
f'{overlap}top5_rmsds_below_2': (100 * (top5_rmsds < 2).sum() / len(top5_rmsds)).__round__(2),
f'{overlap}top5_rmsds_below_5': (100 * (top5_rmsds < 5).sum() / len(top5_rmsds)).__round__(2),
f'{overlap}top5_rmsds_percentile_25': np.percentile(top5_rmsds, 25).round(2),
f'{overlap}top5_rmsds_percentile_50': np.percentile(top5_rmsds, 50).round(2),
f'{overlap}top5_rmsds_percentile_75': np.percentile(top5_rmsds, 75).round(2),
f'{overlap}top5_centroid_below_2': (
100 * (top5_centroid_distances < 2).sum() / len(top5_centroid_distances)).__round__(2),
f'{overlap}top5_centroid_below_5': (
100 * (top5_centroid_distances < 5).sum() / len(top5_centroid_distances)).__round__(2),
f'{overlap}top5_centroid_percentile_25': np.percentile(top5_centroid_distances, 25).round(2),
f'{overlap}top5_centroid_percentile_50': np.percentile(top5_centroid_distances, 50).round(2),
f'{overlap}top5_centroid_percentile_75': np.percentile(top5_centroid_distances, 75).round(2),
})
if N >= 10:
top10_rmsds = np.min(rmsds[:, :10], axis=1)
top10_centroid_distances = centroid_distances[
np.arange(rmsds.shape[0])[:, None], np.argsort(rmsds[:, :10], axis=1)][:, 0]
top10_min_cross_distances = min_cross_distances[
np.arange(rmsds.shape[0])[:, None], np.argsort(rmsds[:, :10], axis=1)][:, 0]
top10_min_self_distances = min_self_distances[
np.arange(rmsds.shape[0])[:, None], np.argsort(rmsds[:, :10], axis=1)][:, 0]
performance_metrics.update({
f'{overlap}top10_steric_clash_fraction': (
100 * (top10_min_cross_distances < 0.4).sum() / len(top10_min_cross_distances)).__round__(2),
f'{overlap}top10_self_intersect_fraction': (
100 * (top10_min_self_distances < 0.4).sum() / len(top10_min_self_distances)).__round__(2),
f'{overlap}top10_rmsds_below_2': (100 * (top10_rmsds < 2).sum() / len(top10_rmsds)).__round__(2),
f'{overlap}top10_rmsds_below_5': (100 * (top10_rmsds < 5).sum() / len(top10_rmsds)).__round__(2),
f'{overlap}top10_rmsds_percentile_25': np.percentile(top10_rmsds, 25).round(2),
f'{overlap}top10_rmsds_percentile_50': np.percentile(top10_rmsds, 50).round(2),
f'{overlap}top10_rmsds_percentile_75': np.percentile(top10_rmsds, 75).round(2),
f'{overlap}top10_centroid_below_2': (
100 * (top10_centroid_distances < 2).sum() / len(top10_centroid_distances)).__round__(2),
f'{overlap}top10_centroid_below_5': (
100 * (top10_centroid_distances < 5).sum() / len(top10_centroid_distances)).__round__(2),
f'{overlap}top10_centroid_percentile_25': np.percentile(top10_centroid_distances, 25).round(2),
f'{overlap}top10_centroid_percentile_50': np.percentile(top10_centroid_distances, 50).round(2),
f'{overlap}top10_centroid_percentile_75': np.percentile(top10_centroid_distances, 75).round(2),
})
if confidence_model is not None:
confidence_ordering = np.argsort(confidences, axis=1)[:, ::-1]
filtered_rmsds = rmsds[np.arange(rmsds.shape[0])[:, None], confidence_ordering][:, 0]
filtered_centroid_distances = centroid_distances[np.arange(rmsds.shape[0])[:, None], confidence_ordering][:, 0]
filtered_min_cross_distances = min_cross_distances[np.arange(rmsds.shape[0])[:, None], confidence_ordering][:,
0]
filtered_min_self_distances = min_self_distances[np.arange(rmsds.shape[0])[:, None], confidence_ordering][:, 0]
performance_metrics.update({
f'{overlap}filtered_self_intersect_fraction': (
100 * (filtered_min_self_distances < 0.4).sum() / len(filtered_min_self_distances)).__round__(
2),
f'{overlap}filtered_steric_clash_fraction': (
100 * (filtered_min_cross_distances < 0.4).sum() / len(filtered_min_cross_distances)).__round__(
2),
f'{overlap}filtered_rmsds_below_2': (100 * (filtered_rmsds < 2).sum() / len(filtered_rmsds)).__round__(2),
f'{overlap}filtered_rmsds_below_5': (100 * (filtered_rmsds < 5).sum() / len(filtered_rmsds)).__round__(2),
f'{overlap}filtered_rmsds_percentile_25': np.percentile(filtered_rmsds, 25).round(2),
f'{overlap}filtered_rmsds_percentile_50': np.percentile(filtered_rmsds, 50).round(2),
f'{overlap}filtered_rmsds_percentile_75': np.percentile(filtered_rmsds, 75).round(2),
f'{overlap}filtered_centroid_below_2': (
100 * (filtered_centroid_distances < 2).sum() / len(filtered_centroid_distances)).__round__(2),
f'{overlap}filtered_centroid_below_5': (
100 * (filtered_centroid_distances < 5).sum() / len(filtered_centroid_distances)).__round__(2),
f'{overlap}filtered_centroid_percentile_25': np.percentile(filtered_centroid_distances, 25).round(2),
f'{overlap}filtered_centroid_percentile_50': np.percentile(filtered_centroid_distances, 50).round(2),
f'{overlap}filtered_centroid_percentile_75': np.percentile(filtered_centroid_distances, 75).round(2),
})
if N >= 5:
top5_filtered_rmsds = np.min(rmsds[np.arange(rmsds.shape[0])[:, None], confidence_ordering][:, :5], axis=1)
top5_filtered_centroid_distances = \
centroid_distances[np.arange(rmsds.shape[0])[:, None], confidence_ordering][:, :5][
np.arange(rmsds.shape[0])[:, None], np.argsort(
rmsds[np.arange(rmsds.shape[0])[:, None], confidence_ordering][:, :5], axis=1)][:, 0]
top5_filtered_min_cross_distances = \
min_cross_distances[np.arange(rmsds.shape[0])[:, None], confidence_ordering][:, :5][
np.arange(rmsds.shape[0])[:, None], np.argsort(
rmsds[np.arange(rmsds.shape[0])[:, None], confidence_ordering][:, :5], axis=1)][:, 0]
top5_filtered_min_self_distances = \
min_self_distances[np.arange(rmsds.shape[0])[:, None], confidence_ordering][:, :5][
np.arange(rmsds.shape[0])[:, None], np.argsort(
rmsds[np.arange(rmsds.shape[0])[:, None], confidence_ordering][:, :5], axis=1)][:, 0]
performance_metrics.update({
f'{overlap}top5_filtered_self_intersect_fraction': (
100 * (top5_filtered_min_cross_distances < 0.4).sum() / len(
top5_filtered_min_cross_distances)).__round__(2),
f'{overlap}top5_filtered_steric_clash_fraction': (
100 * (top5_filtered_min_cross_distances < 0.4).sum() / len(
top5_filtered_min_cross_distances)).__round__(2),
f'{overlap}top5_filtered_rmsds_below_2': (
100 * (top5_filtered_rmsds < 2).sum() / len(top5_filtered_rmsds)).__round__(2),
f'{overlap}top5_filtered_rmsds_below_5': (
100 * (top5_filtered_rmsds < 5).sum() / len(top5_filtered_rmsds)).__round__(2),
f'{overlap}top5_filtered_rmsds_percentile_25': np.percentile(top5_filtered_rmsds, 25).round(2),
f'{overlap}top5_filtered_rmsds_percentile_50': np.percentile(top5_filtered_rmsds, 50).round(2),
f'{overlap}top5_filtered_rmsds_percentile_75': np.percentile(top5_filtered_rmsds, 75).round(2),
f'{overlap}top5_filtered_centroid_below_2': (100 * (top5_filtered_centroid_distances < 2).sum() / len(
top5_filtered_centroid_distances)).__round__(2),
f'{overlap}top5_filtered_centroid_below_5': (100 * (top5_filtered_centroid_distances < 5).sum() / len(
top5_filtered_centroid_distances)).__round__(2),
f'{overlap}top5_filtered_centroid_percentile_25': np.percentile(top5_filtered_centroid_distances,
25).round(2),
f'{overlap}top5_filtered_centroid_percentile_50': np.percentile(top5_filtered_centroid_distances,
50).round(2),
f'{overlap}top5_filtered_centroid_percentile_75': np.percentile(top5_filtered_centroid_distances,
75).round(2),
})
if N >= 10:
top10_filtered_rmsds = np.min(rmsds[np.arange(rmsds.shape[0])[:, None], confidence_ordering][:, :10],
axis=1)
top10_filtered_centroid_distances = \
centroid_distances[np.arange(rmsds.shape[0])[:, None], confidence_ordering][:, :10][
np.arange(rmsds.shape[0])[:, None], np.argsort(
rmsds[np.arange(rmsds.shape[0])[:, None], confidence_ordering][:, :10], axis=1)][:, 0]
top10_filtered_min_cross_distances = \
min_cross_distances[np.arange(rmsds.shape[0])[:, None], confidence_ordering][:, :10][
np.arange(rmsds.shape[0])[:, None], np.argsort(
rmsds[np.arange(rmsds.shape[0])[:, None], confidence_ordering][:, :10], axis=1)][:, 0]
top10_filtered_min_self_distances = \
min_self_distances[np.arange(rmsds.shape[0])[:, None], confidence_ordering][:, :10][
np.arange(rmsds.shape[0])[:, None], np.argsort(
rmsds[np.arange(rmsds.shape[0])[:, None], confidence_ordering][:, :10], axis=1)][:, 0]
performance_metrics.update({
f'{overlap}top10_filtered_self_intersect_fraction': (
100 * (top10_filtered_min_cross_distances < 0.4).sum() / len(
top10_filtered_min_cross_distances)).__round__(2),
f'{overlap}top10_filtered_steric_clash_fraction': (
100 * (top10_filtered_min_cross_distances < 0.4).sum() / len(
top10_filtered_min_cross_distances)).__round__(2),
f'{overlap}top10_filtered_rmsds_below_2': (
100 * (top10_filtered_rmsds < 2).sum() / len(top10_filtered_rmsds)).__round__(2),
f'{overlap}top10_filtered_rmsds_below_5': (
100 * (top10_filtered_rmsds < 5).sum() / len(top10_filtered_rmsds)).__round__(2),
f'{overlap}top10_filtered_rmsds_percentile_25': np.percentile(top10_filtered_rmsds, 25).round(2),
f'{overlap}top10_filtered_rmsds_percentile_50': np.percentile(top10_filtered_rmsds, 50).round(2),
f'{overlap}top10_filtered_rmsds_percentile_75': np.percentile(top10_filtered_rmsds, 75).round(2),
f'{overlap}top10_filtered_centroid_below_2': (100 * (top10_filtered_centroid_distances < 2).sum() / len(
top10_filtered_centroid_distances)).__round__(2),
f'{overlap}top10_filtered_centroid_below_5': (100 * (top10_filtered_centroid_distances < 5).sum() / len(
top10_filtered_centroid_distances)).__round__(2),
f'{overlap}top10_filtered_centroid_percentile_25': np.percentile(top10_filtered_centroid_distances,
25).round(2),
f'{overlap}top10_filtered_centroid_percentile_50': np.percentile(top10_filtered_centroid_distances,
50).round(2),
f'{overlap}top10_filtered_centroid_percentile_75': np.percentile(top10_filtered_centroid_distances,
75).round(2),
})
for k in performance_metrics:
print(k, performance_metrics[k])
if args.wandb:
wandb.log(performance_metrics)
histogram_metrics_list = [('rmsd', rmsds[:, 0]),
('centroid_distance', centroid_distances[:, 0]),
('mean_rmsd', rmsds.mean(axis=1)),
('mean_centroid_distance', centroid_distances.mean(axis=1))]
if N >= 5:
histogram_metrics_list.append(('top5_rmsds', top5_rmsds))
histogram_metrics_list.append(('top5_centroid_distances', top5_centroid_distances))
if N >= 10:
histogram_metrics_list.append(('top10_rmsds', top10_rmsds))
histogram_metrics_list.append(('top10_centroid_distances', top10_centroid_distances))
if confidence_model is not None:
histogram_metrics_list.append(('filtered_rmsd', filtered_rmsds))
histogram_metrics_list.append(('filtered_centroid_distance', filtered_centroid_distances))
if N >= 5:
histogram_metrics_list.append(('top5_filtered_rmsds', top5_filtered_rmsds))
histogram_metrics_list.append(('top5_filtered_centroid_distances', top5_filtered_centroid_distances))
if N >= 10:
histogram_metrics_list.append(('top10_filtered_rmsds', top10_filtered_rmsds))
histogram_metrics_list.append(('top10_filtered_centroid_distances', top10_filtered_centroid_distances))
|