File size: 23,645 Bytes
4a3f787
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
import math

from e3nn import o3
import torch
from torch import nn
from torch.nn import functional as F
from torch_cluster import radius, radius_graph
from torch_scatter import scatter, scatter_mean
import numpy as np
from e3nn.nn import BatchNorm

from utils import so3, torus
from datasets.process_mols import lig_feature_dims, rec_residue_feature_dims


class AtomEncoder(torch.nn.Module):

    def __init__(self, emb_dim, feature_dims, sigma_embed_dim, lm_embedding_type= None):
        # first element of feature_dims tuple is a list with the lenght of each categorical feature and the second is the number of scalar features
        super(AtomEncoder, self).__init__()
        self.atom_embedding_list = torch.nn.ModuleList()
        self.num_categorical_features = len(feature_dims[0])
        self.num_scalar_features = feature_dims[1] + sigma_embed_dim
        self.lm_embedding_type = lm_embedding_type
        for i, dim in enumerate(feature_dims[0]):
            emb = torch.nn.Embedding(dim, emb_dim)
            torch.nn.init.xavier_uniform_(emb.weight.data)
            self.atom_embedding_list.append(emb)

        if self.num_scalar_features > 0:
            self.linear = torch.nn.Linear(self.num_scalar_features, emb_dim)
        if self.lm_embedding_type is not None:
            if self.lm_embedding_type == 'esm':
                self.lm_embedding_dim = 1280
            else: raise ValueError('LM Embedding type was not correctly determined. LM embedding type: ', self.lm_embedding_type)
            self.lm_embedding_layer = torch.nn.Linear(self.lm_embedding_dim + emb_dim, emb_dim)

    def forward(self, x):
        x_embedding = 0
        if self.lm_embedding_type is not None:
            assert x.shape[1] == self.num_categorical_features + self.num_scalar_features + self.lm_embedding_dim
        else:
            assert x.shape[1] == self.num_categorical_features + self.num_scalar_features
        for i in range(self.num_categorical_features):
            x_embedding += self.atom_embedding_list[i](x[:, i].long())

        if self.num_scalar_features > 0:
            x_embedding += self.linear(x[:, self.num_categorical_features:self.num_categorical_features + self.num_scalar_features])
        if self.lm_embedding_type is not None:
            x_embedding = self.lm_embedding_layer(torch.cat([x_embedding, x[:, -self.lm_embedding_dim:]], axis=1))
        return x_embedding


class TensorProductConvLayer(torch.nn.Module):
    def __init__(self, in_irreps, sh_irreps, out_irreps, n_edge_features, residual=True, batch_norm=True, dropout=0.0,
                 hidden_features=None):
        super(TensorProductConvLayer, self).__init__()
        self.in_irreps = in_irreps
        self.out_irreps = out_irreps
        self.sh_irreps = sh_irreps
        self.residual = residual
        if hidden_features is None:
            hidden_features = n_edge_features

        self.tp = tp = o3.FullyConnectedTensorProduct(in_irreps, sh_irreps, out_irreps, shared_weights=False)

        self.fc = nn.Sequential(
            nn.Linear(n_edge_features, hidden_features),
            nn.ReLU(),
            nn.Dropout(dropout),
            nn.Linear(hidden_features, tp.weight_numel)
        )
        self.batch_norm = BatchNorm(out_irreps) if batch_norm else None

    def forward(self, node_attr, edge_index, edge_attr, edge_sh, out_nodes=None, reduce='mean'):

        edge_src, edge_dst = edge_index
        tp = self.tp(node_attr[edge_dst], edge_sh, self.fc(edge_attr))

        out_nodes = out_nodes or node_attr.shape[0]
        out = scatter(tp, edge_src, dim=0, dim_size=out_nodes, reduce=reduce)

        if self.residual:
            padded = F.pad(node_attr, (0, out.shape[-1] - node_attr.shape[-1]))
            out = out + padded

        if self.batch_norm:
            out = self.batch_norm(out)
        return out


class TensorProductScoreModel(torch.nn.Module):
    def __init__(self, t_to_sigma, device, timestep_emb_func, in_lig_edge_features=4, sigma_embed_dim=32, sh_lmax=2,
                 ns=16, nv=4, num_conv_layers=2, lig_max_radius=5, rec_max_radius=30, cross_max_distance=250,
                 center_max_distance=30, distance_embed_dim=32, cross_distance_embed_dim=32, no_torsion=False,
                 scale_by_sigma=True, use_second_order_repr=False, batch_norm=True,
                 dynamic_max_cross=False, dropout=0.0, lm_embedding_type=None, confidence_mode=False,
                 confidence_dropout=0, confidence_no_batchnorm=False, num_confidence_outputs=1):
        super(TensorProductScoreModel, self).__init__()
        self.t_to_sigma = t_to_sigma
        self.in_lig_edge_features = in_lig_edge_features
        self.sigma_embed_dim = sigma_embed_dim
        self.lig_max_radius = lig_max_radius
        self.rec_max_radius = rec_max_radius
        self.cross_max_distance = cross_max_distance
        self.dynamic_max_cross = dynamic_max_cross
        self.center_max_distance = center_max_distance
        self.distance_embed_dim = distance_embed_dim
        self.cross_distance_embed_dim = cross_distance_embed_dim
        self.sh_irreps = o3.Irreps.spherical_harmonics(lmax=sh_lmax)
        self.ns, self.nv = ns, nv
        self.scale_by_sigma = scale_by_sigma
        self.device = device
        self.no_torsion = no_torsion
        self.timestep_emb_func = timestep_emb_func
        self.confidence_mode = confidence_mode
        self.num_conv_layers = num_conv_layers

        self.lig_node_embedding = AtomEncoder(emb_dim=ns, feature_dims=lig_feature_dims, sigma_embed_dim=sigma_embed_dim)
        self.lig_edge_embedding = nn.Sequential(nn.Linear(in_lig_edge_features + sigma_embed_dim + distance_embed_dim, ns),nn.ReLU(), nn.Dropout(dropout),nn.Linear(ns, ns))

        self.rec_node_embedding = AtomEncoder(emb_dim=ns, feature_dims=rec_residue_feature_dims, sigma_embed_dim=sigma_embed_dim, lm_embedding_type=lm_embedding_type)
        self.rec_edge_embedding = nn.Sequential(nn.Linear(sigma_embed_dim + distance_embed_dim, ns), nn.ReLU(), nn.Dropout(dropout),nn.Linear(ns, ns))

        self.cross_edge_embedding = nn.Sequential(nn.Linear(sigma_embed_dim + cross_distance_embed_dim, ns), nn.ReLU(), nn.Dropout(dropout),nn.Linear(ns, ns))

        self.lig_distance_expansion = GaussianSmearing(0.0, lig_max_radius, distance_embed_dim)
        self.rec_distance_expansion = GaussianSmearing(0.0, rec_max_radius, distance_embed_dim)
        self.cross_distance_expansion = GaussianSmearing(0.0, cross_max_distance, cross_distance_embed_dim)

        if use_second_order_repr:
            irrep_seq = [
                f'{ns}x0e',
                f'{ns}x0e + {nv}x1o + {nv}x2e',
                f'{ns}x0e + {nv}x1o + {nv}x2e + {nv}x1e + {nv}x2o',
                f'{ns}x0e + {nv}x1o + {nv}x2e + {nv}x1e + {nv}x2o + {ns}x0o'
            ]
        else:
            irrep_seq = [
                f'{ns}x0e',
                f'{ns}x0e + {nv}x1o',
                f'{ns}x0e + {nv}x1o + {nv}x1e',
                f'{ns}x0e + {nv}x1o + {nv}x1e + {ns}x0o'
            ]

        lig_conv_layers, rec_conv_layers, lig_to_rec_conv_layers, rec_to_lig_conv_layers = [], [], [], []
        for i in range(num_conv_layers):
            in_irreps = irrep_seq[min(i, len(irrep_seq) - 1)]
            out_irreps = irrep_seq[min(i + 1, len(irrep_seq) - 1)]
            parameters = {
                'in_irreps': in_irreps,
                'sh_irreps': self.sh_irreps,
                'out_irreps': out_irreps,
                'n_edge_features': 3 * ns,
                'hidden_features': 3 * ns,
                'residual': False,
                'batch_norm': batch_norm,
                'dropout': dropout
            }

            lig_layer = TensorProductConvLayer(**parameters)
            lig_conv_layers.append(lig_layer)
            rec_layer = TensorProductConvLayer(**parameters)
            rec_conv_layers.append(rec_layer)
            lig_to_rec_layer = TensorProductConvLayer(**parameters)
            lig_to_rec_conv_layers.append(lig_to_rec_layer)
            rec_to_lig_layer = TensorProductConvLayer(**parameters)
            rec_to_lig_conv_layers.append(rec_to_lig_layer)

        self.lig_conv_layers = nn.ModuleList(lig_conv_layers)
        self.rec_conv_layers = nn.ModuleList(rec_conv_layers)
        self.lig_to_rec_conv_layers = nn.ModuleList(lig_to_rec_conv_layers)
        self.rec_to_lig_conv_layers = nn.ModuleList(rec_to_lig_conv_layers)

        if self.confidence_mode:
            self.confidence_predictor = nn.Sequential(
                nn.Linear(2*self.ns if num_conv_layers >= 3 else self.ns,ns),
                nn.BatchNorm1d(ns) if not confidence_no_batchnorm else nn.Identity(),
                nn.ReLU(),
                nn.Dropout(confidence_dropout),
                nn.Linear(ns, ns),
                nn.BatchNorm1d(ns) if not confidence_no_batchnorm else nn.Identity(),
                nn.ReLU(),
                nn.Dropout(confidence_dropout),
                nn.Linear(ns, num_confidence_outputs)
            )
        else:
            # center of mass translation and rotation components
            self.center_distance_expansion = GaussianSmearing(0.0, center_max_distance, distance_embed_dim)
            self.center_edge_embedding = nn.Sequential(
                nn.Linear(distance_embed_dim + sigma_embed_dim, ns),
                nn.ReLU(),
                nn.Dropout(dropout),
                nn.Linear(ns, ns)
            )

            self.final_conv = TensorProductConvLayer(
                in_irreps=self.lig_conv_layers[-1].out_irreps,
                sh_irreps=self.sh_irreps,
                out_irreps=f'2x1o + 2x1e',
                n_edge_features=2 * ns,
                residual=False,
                dropout=dropout,
                batch_norm=batch_norm
            )
            self.tr_final_layer = nn.Sequential(nn.Linear(1 + sigma_embed_dim, ns),nn.Dropout(dropout), nn.ReLU(), nn.Linear(ns, 1))
            self.rot_final_layer = nn.Sequential(nn.Linear(1 + sigma_embed_dim, ns),nn.Dropout(dropout), nn.ReLU(), nn.Linear(ns, 1))

            if not no_torsion:
                # torsion angles components
                self.final_edge_embedding = nn.Sequential(
                    nn.Linear(distance_embed_dim, ns),
                    nn.ReLU(),
                    nn.Dropout(dropout),
                    nn.Linear(ns, ns)
                )
                self.final_tp_tor = o3.FullTensorProduct(self.sh_irreps, "2e")
                self.tor_bond_conv = TensorProductConvLayer(
                    in_irreps=self.lig_conv_layers[-1].out_irreps,
                    sh_irreps=self.final_tp_tor.irreps_out,
                    out_irreps=f'{ns}x0o + {ns}x0e',
                    n_edge_features=3 * ns,
                    residual=False,
                    dropout=dropout,
                    batch_norm=batch_norm
                )
                self.tor_final_layer = nn.Sequential(
                    nn.Linear(2 * ns, ns, bias=False),
                    nn.Tanh(),
                    nn.Dropout(dropout),
                    nn.Linear(ns, 1, bias=False)
                )

    def forward(self, data):
        if not self.confidence_mode:
            tr_sigma, rot_sigma, tor_sigma = self.t_to_sigma(*[data.complex_t[noise_type] for noise_type in ['tr', 'rot', 'tor']])
        else:
            tr_sigma, rot_sigma, tor_sigma = [data.complex_t[noise_type] for noise_type in ['tr', 'rot', 'tor']]

        # build ligand graph
        lig_node_attr, lig_edge_index, lig_edge_attr, lig_edge_sh = self.build_lig_conv_graph(data)
        lig_src, lig_dst = lig_edge_index
        lig_node_attr = self.lig_node_embedding(lig_node_attr)
        lig_edge_attr = self.lig_edge_embedding(lig_edge_attr)

        # build receptor graph
        rec_node_attr, rec_edge_index, rec_edge_attr, rec_edge_sh = self.build_rec_conv_graph(data)
        rec_src, rec_dst = rec_edge_index
        rec_node_attr = self.rec_node_embedding(rec_node_attr)
        rec_edge_attr = self.rec_edge_embedding(rec_edge_attr)

        # build cross graph
        if self.dynamic_max_cross:
            cross_cutoff = (tr_sigma * 3 + 20).unsqueeze(1)
        else:
            cross_cutoff = self.cross_max_distance
        cross_edge_index, cross_edge_attr, cross_edge_sh = self.build_cross_conv_graph(data, cross_cutoff)
        cross_lig, cross_rec = cross_edge_index
        cross_edge_attr = self.cross_edge_embedding(cross_edge_attr)

        for l in range(len(self.lig_conv_layers)):
            # intra graph message passing
            lig_edge_attr_ = torch.cat([lig_edge_attr, lig_node_attr[lig_src, :self.ns], lig_node_attr[lig_dst, :self.ns]], -1)
            lig_intra_update = self.lig_conv_layers[l](lig_node_attr, lig_edge_index, lig_edge_attr_, lig_edge_sh)

            # inter graph message passing
            rec_to_lig_edge_attr_ = torch.cat([cross_edge_attr, lig_node_attr[cross_lig, :self.ns], rec_node_attr[cross_rec, :self.ns]], -1)
            lig_inter_update = self.rec_to_lig_conv_layers[l](rec_node_attr, cross_edge_index, rec_to_lig_edge_attr_, cross_edge_sh,
                                                              out_nodes=lig_node_attr.shape[0])

            if l != len(self.lig_conv_layers) - 1:
                rec_edge_attr_ = torch.cat([rec_edge_attr, rec_node_attr[rec_src, :self.ns], rec_node_attr[rec_dst, :self.ns]], -1)
                rec_intra_update = self.rec_conv_layers[l](rec_node_attr, rec_edge_index, rec_edge_attr_, rec_edge_sh)

                lig_to_rec_edge_attr_ = torch.cat([cross_edge_attr, lig_node_attr[cross_lig, :self.ns], rec_node_attr[cross_rec, :self.ns]], -1)
                rec_inter_update = self.lig_to_rec_conv_layers[l](lig_node_attr, torch.flip(cross_edge_index, dims=[0]), lig_to_rec_edge_attr_,
                                                                  cross_edge_sh, out_nodes=rec_node_attr.shape[0])

            # padding original features
            lig_node_attr = F.pad(lig_node_attr, (0, lig_intra_update.shape[-1] - lig_node_attr.shape[-1]))

            # update features with residual updates
            lig_node_attr = lig_node_attr + lig_intra_update + lig_inter_update

            if l != len(self.lig_conv_layers) - 1:
                rec_node_attr = F.pad(rec_node_attr, (0, rec_intra_update.shape[-1] - rec_node_attr.shape[-1]))
                rec_node_attr = rec_node_attr + rec_intra_update + rec_inter_update

        # compute confidence score
        if self.confidence_mode:
            scalar_lig_attr = torch.cat([lig_node_attr[:,:self.ns],lig_node_attr[:,-self.ns:] ], dim=1) if self.num_conv_layers >= 3 else lig_node_attr[:,:self.ns]
            confidence = self.confidence_predictor(scatter_mean(scalar_lig_attr, data['ligand'].batch, dim=0)).squeeze(dim=-1)
            return confidence

        # compute translational and rotational score vectors
        center_edge_index, center_edge_attr, center_edge_sh = self.build_center_conv_graph(data)
        center_edge_attr = self.center_edge_embedding(center_edge_attr)
        center_edge_attr = torch.cat([center_edge_attr, lig_node_attr[center_edge_index[0], :self.ns]], -1)
        global_pred = self.final_conv(lig_node_attr, center_edge_index, center_edge_attr, center_edge_sh, out_nodes=data.num_graphs)

        tr_pred = global_pred[:, :3] + global_pred[:, 6:9]
        rot_pred = global_pred[:, 3:6] + global_pred[:, 9:]
        data.graph_sigma_emb = self.timestep_emb_func(data.complex_t['tr'])

        # fix the magnitude of translational and rotational score vectors
        tr_norm = torch.linalg.vector_norm(tr_pred, dim=1).unsqueeze(1)
        tr_pred = tr_pred / tr_norm * self.tr_final_layer(torch.cat([tr_norm, data.graph_sigma_emb], dim=1))
        rot_norm = torch.linalg.vector_norm(rot_pred, dim=1).unsqueeze(1)
        rot_pred = rot_pred / rot_norm * self.rot_final_layer(torch.cat([rot_norm, data.graph_sigma_emb], dim=1))

        if self.scale_by_sigma:
            tr_pred = tr_pred / tr_sigma.unsqueeze(1)
            rot_pred = rot_pred * so3.score_norm(rot_sigma.cpu()).unsqueeze(1).to(data['ligand'].x.device)

        if self.no_torsion or data['ligand'].edge_mask.sum() == 0: return tr_pred, rot_pred, torch.empty(0, device=self.device)

        # torsional components
        tor_bonds, tor_edge_index, tor_edge_attr, tor_edge_sh = self.build_bond_conv_graph(data)
        tor_bond_vec = data['ligand'].pos[tor_bonds[1]] - data['ligand'].pos[tor_bonds[0]]
        tor_bond_attr = lig_node_attr[tor_bonds[0]] + lig_node_attr[tor_bonds[1]]

        tor_bonds_sh = o3.spherical_harmonics("2e", tor_bond_vec, normalize=True, normalization='component')
        tor_edge_sh = self.final_tp_tor(tor_edge_sh, tor_bonds_sh[tor_edge_index[0]])

        tor_edge_attr = torch.cat([tor_edge_attr, lig_node_attr[tor_edge_index[1], :self.ns],
                                   tor_bond_attr[tor_edge_index[0], :self.ns]], -1)
        tor_pred = self.tor_bond_conv(lig_node_attr, tor_edge_index, tor_edge_attr, tor_edge_sh,
                                  out_nodes=data['ligand'].edge_mask.sum(), reduce='mean')
        tor_pred = self.tor_final_layer(tor_pred).squeeze(1)
        edge_sigma = tor_sigma[data['ligand'].batch][data['ligand', 'ligand'].edge_index[0]][data['ligand'].edge_mask]

        if self.scale_by_sigma:
            tor_pred = tor_pred * torch.sqrt(torch.tensor(torus.score_norm(edge_sigma.cpu().numpy())).float()
                                             .to(data['ligand'].x.device))
        return tr_pred, rot_pred, tor_pred

    def build_lig_conv_graph(self, data):
        # builds the ligand graph edges and initial node and edge features
        data['ligand'].node_sigma_emb = self.timestep_emb_func(data['ligand'].node_t['tr'])

        # compute edges
        radius_edges = radius_graph(data['ligand'].pos, self.lig_max_radius, data['ligand'].batch)
        edge_index = torch.cat([data['ligand', 'ligand'].edge_index, radius_edges], 1).long()
        edge_attr = torch.cat([
            data['ligand', 'ligand'].edge_attr,
            torch.zeros(radius_edges.shape[-1], self.in_lig_edge_features, device=data['ligand'].x.device)
        ], 0)

        # compute initial features
        edge_sigma_emb = data['ligand'].node_sigma_emb[edge_index[0].long()]
        edge_attr = torch.cat([edge_attr, edge_sigma_emb], 1)
        node_attr = torch.cat([data['ligand'].x, data['ligand'].node_sigma_emb], 1)

        src, dst = edge_index
        edge_vec = data['ligand'].pos[dst.long()] - data['ligand'].pos[src.long()]
        edge_length_emb = self.lig_distance_expansion(edge_vec.norm(dim=-1))

        edge_attr = torch.cat([edge_attr, edge_length_emb], 1)
        edge_sh = o3.spherical_harmonics(self.sh_irreps, edge_vec, normalize=True, normalization='component')

        return node_attr, edge_index, edge_attr, edge_sh

    def build_rec_conv_graph(self, data):
        # builds the receptor initial node and edge embeddings
        data['receptor'].node_sigma_emb = self.timestep_emb_func(data['receptor'].node_t['tr']) # tr rot and tor noise is all the same
        node_attr = torch.cat([data['receptor'].x, data['receptor'].node_sigma_emb], 1)

        # this assumes the edges were already created in preprocessing since protein's structure is fixed
        edge_index = data['receptor', 'receptor'].edge_index
        src, dst = edge_index
        edge_vec = data['receptor'].pos[dst.long()] - data['receptor'].pos[src.long()]

        edge_length_emb = self.rec_distance_expansion(edge_vec.norm(dim=-1))
        edge_sigma_emb = data['receptor'].node_sigma_emb[edge_index[0].long()]
        edge_attr = torch.cat([edge_sigma_emb, edge_length_emb], 1)
        edge_sh = o3.spherical_harmonics(self.sh_irreps, edge_vec, normalize=True, normalization='component')

        return node_attr, edge_index, edge_attr, edge_sh

    def build_cross_conv_graph(self, data, cross_distance_cutoff):
        # builds the cross edges between ligand and receptor
        if torch.is_tensor(cross_distance_cutoff):
            # different cutoff for every graph (depends on the diffusion time)
            edge_index = radius(data['receptor'].pos / cross_distance_cutoff[data['receptor'].batch],
                                data['ligand'].pos / cross_distance_cutoff[data['ligand'].batch], 1,
                                data['receptor'].batch, data['ligand'].batch, max_num_neighbors=10000)
        else:
            edge_index = radius(data['receptor'].pos, data['ligand'].pos, cross_distance_cutoff,
                            data['receptor'].batch, data['ligand'].batch, max_num_neighbors=10000)

        src, dst = edge_index
        edge_vec = data['receptor'].pos[dst.long()] - data['ligand'].pos[src.long()]

        edge_length_emb = self.cross_distance_expansion(edge_vec.norm(dim=-1))
        edge_sigma_emb = data['ligand'].node_sigma_emb[src.long()]
        edge_attr = torch.cat([edge_sigma_emb, edge_length_emb], 1)
        edge_sh = o3.spherical_harmonics(self.sh_irreps, edge_vec, normalize=True, normalization='component')

        return edge_index, edge_attr, edge_sh

    def build_center_conv_graph(self, data):
        # builds the filter and edges for the convolution generating translational and rotational scores
        edge_index = torch.cat([data['ligand'].batch.unsqueeze(0), torch.arange(len(data['ligand'].batch)).to(data['ligand'].x.device).unsqueeze(0)], dim=0)

        center_pos, count = torch.zeros((data.num_graphs, 3)).to(data['ligand'].x.device), torch.zeros((data.num_graphs, 3)).to(data['ligand'].x.device)
        center_pos.index_add_(0, index=data['ligand'].batch, source=data['ligand'].pos)
        center_pos = center_pos / torch.bincount(data['ligand'].batch).unsqueeze(1)

        edge_vec = data['ligand'].pos[edge_index[1]] - center_pos[edge_index[0]]
        edge_attr = self.center_distance_expansion(edge_vec.norm(dim=-1))
        edge_sigma_emb = data['ligand'].node_sigma_emb[edge_index[1].long()]
        edge_attr = torch.cat([edge_attr, edge_sigma_emb], 1)
        edge_sh = o3.spherical_harmonics(self.sh_irreps, edge_vec, normalize=True, normalization='component')
        return edge_index, edge_attr, edge_sh

    def build_bond_conv_graph(self, data):
        # builds the graph for the convolution between the center of the rotatable bonds and the neighbouring nodes
        bonds = data['ligand', 'ligand'].edge_index[:, data['ligand'].edge_mask].long()
        bond_pos = (data['ligand'].pos[bonds[0]] + data['ligand'].pos[bonds[1]]) / 2
        bond_batch = data['ligand'].batch[bonds[0]]
        edge_index = radius(data['ligand'].pos, bond_pos, self.lig_max_radius, batch_x=data['ligand'].batch, batch_y=bond_batch)

        edge_vec = data['ligand'].pos[edge_index[1]] - bond_pos[edge_index[0]]
        edge_attr = self.lig_distance_expansion(edge_vec.norm(dim=-1))

        edge_attr = self.final_edge_embedding(edge_attr)
        edge_sh = o3.spherical_harmonics(self.sh_irreps, edge_vec, normalize=True, normalization='component')

        return bonds, edge_index, edge_attr, edge_sh


class GaussianSmearing(torch.nn.Module):
    # used to embed the edge distances
    def __init__(self, start=0.0, stop=5.0, num_gaussians=50):
        super().__init__()
        offset = torch.linspace(start, stop, num_gaussians)
        self.coeff = -0.5 / (offset[1] - offset[0]).item() ** 2
        self.register_buffer('offset', offset)

    def forward(self, dist):
        dist = dist.view(-1, 1) - self.offset.view(1, -1)
        return torch.exp(self.coeff * torch.pow(dist, 2))