File size: 20,506 Bytes
486fd8a
 
 
 
 
 
 
39f2310
 
 
 
 
6643ce7
 
 
486fd8a
 
 
 
 
 
 
 
 
 
334e3a1
 
 
 
486fd8a
39f2310
16c9bf9
 
486fd8a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
334e3a1
 
486fd8a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
334e3a1
 
 
 
486fd8a
334e3a1
 
 
486fd8a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
334e3a1
486fd8a
 
 
 
334e3a1
 
 
 
 
 
 
 
 
 
 
 
486fd8a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
334e3a1
 
 
 
 
 
 
 
 
 
 
 
486fd8a
2a795a6
486fd8a
 
 
334e3a1
c1d7a42
334e3a1
 
 
 
486fd8a
 
 
 
 
 
 
 
334e3a1
 
 
 
486fd8a
 
0fc2f31
 
486fd8a
 
 
 
 
 
 
 
 
 
 
 
334e3a1
 
 
486fd8a
 
 
 
 
 
 
0fc2f31
c1d7a42
 
0fc2f31
c1d7a42
 
 
0fc2f31
 
486fd8a
 
 
 
 
 
 
 
 
 
 
e1f203f
 
 
486fd8a
0fc2f31
486fd8a
 
 
 
 
 
334e3a1
486fd8a
 
 
a69a846
486fd8a
 
 
 
 
 
 
334e3a1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a69a846
486fd8a
 
 
 
a69a846
16c9bf9
486fd8a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a69a846
486fd8a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
334e3a1
486fd8a
 
 
 
 
 
 
 
334e3a1
486fd8a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
334e3a1
0fc2f31
 
 
334e3a1
 
 
 
0fc2f31
 
486fd8a
334e3a1
 
486fd8a
 
334e3a1
486fd8a
 
 
334e3a1
 
 
 
 
 
486fd8a
 
 
 
 
 
 
 
 
334e3a1
486fd8a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a69a846
334e3a1
 
a69a846
 
 
 
 
 
 
 
486fd8a
 
 
 
 
 
 
 
334e3a1
486fd8a
 
 
334e3a1
 
 
 
a69a846
ac59745
a69a846
 
334e3a1
0fc2f31
 
 
 
 
a69a846
ac59745
a69a846
 
0fc2f31
334e3a1
 
 
 
 
a69a846
ac59745
a69a846
 
334e3a1
 
 
 
 
 
a69a846
ac59745
a69a846
 
334e3a1
 
 
 
 
 
a69a846
ac59745
a69a846
 
334e3a1
 
 
 
 
 
a69a846
ac59745
a69a846
 
334e3a1
486fd8a
a69a846
334e3a1
 
486fd8a
 
 
 
a69a846
334e3a1
486fd8a
334e3a1
486fd8a
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
import gradio as gr
import os

import copy
import os
import torch

print(torch.__version__)

import sys
print(sys.version)

import subprocess


import time
from argparse import ArgumentParser, Namespace, FileType
from rdkit.Chem import RemoveHs
from functools import partial
import numpy as np
import pandas as pd
from rdkit import RDLogger
from rdkit.Chem import MolFromSmiles, AddHs
from torch_geometric.loader import DataLoader
import yaml
import sys
import csv

csv.field_size_limit(sys.maxsize)


os.makedirs("data/esm2_output", exist_ok=True)
os.makedirs("results", exist_ok=True)
from datasets.process_mols import (
    read_molecule,
    generate_conformer,
    write_mol_with_coords,
)
from datasets.pdbbind import PDBBind
from utils.diffusion_utils import t_to_sigma as t_to_sigma_compl, get_t_schedule
from utils.sampling import randomize_position, sampling
from utils.utils import get_model
from utils.visualise import PDBFile
from tqdm import tqdm
from datasets.esm_embedding_preparation import esm_embedding_prep
import subprocess

device = torch.device("cuda" if torch.cuda.is_available() else "cpu")

with open(f"workdir/paper_score_model/model_parameters.yml") as f:
    score_model_args = Namespace(**yaml.full_load(f))

with open(f"workdir/paper_confidence_model/model_parameters.yml") as f:
    confidence_args = Namespace(**yaml.full_load(f))

import shutil

t_to_sigma = partial(t_to_sigma_compl, args=score_model_args)

model = get_model(score_model_args, device, t_to_sigma=t_to_sigma, no_parallel=True)
state_dict = torch.load(
    f"workdir/paper_score_model/best_ema_inference_epoch_model.pt",
    map_location=torch.device("cpu"),
)
model.load_state_dict(state_dict, strict=True)
model = model.to(device)
model.eval()

confidence_model = get_model(
    confidence_args,
    device,
    t_to_sigma=t_to_sigma,
    no_parallel=True,
    confidence_mode=True,
)
state_dict = torch.load(
    f"workdir/paper_confidence_model/best_model_epoch75.pt",
    map_location=torch.device("cpu"),
)
confidence_model.load_state_dict(state_dict, strict=True)
confidence_model = confidence_model.to(device)
confidence_model.eval()


def get_pdb(pdb_code="", filepath=""):
    try:
        return filepath.name
    except AttributeError as e:
        if pdb_code is None or pdb_code == "":
            return None
        else:
            os.system(f"wget -qnc https://files.rcsb.org/view/{pdb_code}.pdb")
            return f"{pdb_code}.pdb"


def get_ligand(smiles="", filepath=""):
    if smiles is None or smiles == "":
        try:
            return filepath.name
        except AttributeError as e:
            return None
    else:
        return smiles


def read_mol(molpath):
    with open(molpath, "r") as fp:
        lines = fp.readlines()
    mol = ""
    for l in lines:
        mol += l
    return mol


def molecule(input_pdb, ligand_pdb, original_ligand):

    structure = read_mol(input_pdb)
    mol = read_mol(ligand_pdb)

    try:
        ligand = read_mol(original_ligand.name)
        _, ext = os.path.splitext(original_ligand.name)
        lig_str_1 = """let original_ligand = `""" + ligand + """`"""
        lig_str_2 = f"""
        viewer.addModel( original_ligand, "{ext[1:]}" );
        viewer.getModel(2).setStyle({{stick:{{colorscheme:"greenCarbon"}}}});"""
    except AttributeError as e:
        ligand = None
        lig_str_1 = ""
        lig_str_2 = ""

    x = (
        """<!DOCTYPE html>
        <html>
        <head>    
    <meta http-equiv="content-type" content="text/html; charset=UTF-8" />
    <style>
    body{
        font-family:sans-serif
    }
    .mol-container {
    width: 600px;
    height: 600px;
    position: relative;
    mx-auto:0
    }
    .mol-container select{
        background-image:None;
    }
    .green{
        width:20px;
        height:20px;
        background-color:#33ff45;
        display:inline-block;
    }
    .magenta{
        width:20px;
        height:20px;
        background-color:magenta;
        display:inline-block;
    }
    </style>
<script src="https://cdnjs.cloudflare.com/ajax/libs/jquery/3.6.3/jquery.min.js" integrity="sha512-STof4xm1wgkfm7heWqFJVn58Hm3EtS31XFaagaa8VMReCXAkQnJZ+jEy8PCC/iT18dFy95WcExNHFTqLyp72eQ==" crossorigin="anonymous" referrerpolicy="no-referrer"></script>
    <script src="https://3Dmol.csb.pitt.edu/build/3Dmol-min.js"></script>
    </head>
    <body>  
     <button id="startanimation">Replay diffusion process</button> 
     <button id="togglesurface">Toggle surface representation</button> 
     <div>
     <span class="green"></span> Uploaded ligand position
     <span class="magenta"></span> Predicted ligand position
     </div>
    <div id="container" class="mol-container"></div>
  
            <script>
               let ligand = `"""
        + mol
        + """`  
        let structure = `"""
        + structure
        + """`
        """
        + lig_str_1
        + """
      
             let viewer = null;
             let surface = false;
             let surf = null;
             $(document).ready(function () {
                let element = $("#container");
                let config = { backgroundColor: "white" };
                viewer = $3Dmol.createViewer(element, config);
                viewer.addModel( structure, "pdb" );
                viewer.setStyle({}, {cartoon: {color: "gray"}});
                viewer.zoomTo();
                viewer.zoom(0.7);
                viewer.addModelsAsFrames(ligand, "pdb");
                viewer.animate({loop: "forward",reps: 1});
                
                viewer.getModel(1).setStyle({stick:{colorscheme:"magentaCarbon"}});
                """
        + lig_str_2
        + """
                viewer.render();
                
              })

              $("#startanimation").click(function() {
                viewer.animate({loop: "forward",reps: 1});
              });
              $("#togglesurface").click(function() {
               if (surface != true) {
                    surf = viewer.addSurface($3Dmol.SurfaceType.VDW, { "opacity": 0.9, "color": "white" }, { model: 0 });  
                    surface = true;
                } else {
                    viewer.removeAllSurfaces()
                    surface = false;
                }
              });
        </script>
        </body></html>"""
    )

    return f"""<iframe style="width: 100%; height: 700px" name="result" allow="midi; geolocation; microphone; camera; 
    display-capture; encrypted-media;" sandbox="allow-modals allow-forms 
    allow-scripts allow-same-origin allow-popups 
    allow-top-navigation-by-user-activation allow-downloads" allowfullscreen="" 
    allowpaymentrequest="" frameborder="0" srcdoc='{x}'></iframe>"""


import sys


def esm(protein_path, out_file):
    print("running esm")
    esm_embedding_prep(out_file, protein_path)
    # create args object with defaults
    os.environ["HOME"] = "esm/model_weights"
    subprocess.call(
        f"python esm/scripts/extract.py esm2_t33_650M_UR50D {out_file} data/esm2_output --repr_layers 33 --include per_tok",
        shell=True,
        env=os.environ,
    )


def update(inp, file, ligand_inp, ligand_file, n_it, n_samples, actual_steps, no_final_step_noise):
    pdb_path = get_pdb(inp, file)
    ligand_path = get_ligand(ligand_inp, ligand_file)

    esm(
        pdb_path,
        f"data/{os.path.basename(pdb_path)}_prepared_for_esm.fasta",
    )
    tr_schedule = get_t_schedule(inference_steps=n_it)
    rot_schedule = tr_schedule
    tor_schedule = tr_schedule
    print("common t schedule", tr_schedule)
    (
        failures,
        skipped,
        confidences_list,
        names_list,
        run_times,
        min_self_distances_list,
    ) = (
        0,
        0,
        [],
        [],
        [],
        [],
    )
    N = n_samples  # number of samples to generate
    protein_path_list = [pdb_path]
    ligand_descriptions = [ligand_path]
    no_random = False
    ode = False
    no_final_step_noise = no_final_step_noise
    out_dir = "results/"
    test_dataset = PDBBind(
        transform=None,
        root="",
        protein_path_list=protein_path_list,
        ligand_descriptions=ligand_descriptions,
        receptor_radius=score_model_args.receptor_radius,
        cache_path="data/cache",
        remove_hs=score_model_args.remove_hs,
        max_lig_size=None,
        c_alpha_max_neighbors=score_model_args.c_alpha_max_neighbors,
        matching=False,
        keep_original=False,
        popsize=score_model_args.matching_popsize,
        maxiter=score_model_args.matching_maxiter,
        all_atoms=score_model_args.all_atoms,
        atom_radius=score_model_args.atom_radius,
        atom_max_neighbors=score_model_args.atom_max_neighbors,
        esm_embeddings_path="data/esm2_output",
        require_ligand=True,
        num_workers=1,
        keep_local_structures=False,
    )
    test_loader = DataLoader(dataset=test_dataset, batch_size=1, shuffle=False)
    confidence_test_dataset = PDBBind(
        transform=None,
        root="",
        protein_path_list=protein_path_list,
        ligand_descriptions=ligand_descriptions,
        receptor_radius=confidence_args.receptor_radius,
        cache_path="data/cache",
        remove_hs=confidence_args.remove_hs,
        max_lig_size=None,
        c_alpha_max_neighbors=confidence_args.c_alpha_max_neighbors,
        matching=False,
        keep_original=False,
        popsize=confidence_args.matching_popsize,
        maxiter=confidence_args.matching_maxiter,
        all_atoms=confidence_args.all_atoms,
        atom_radius=confidence_args.atom_radius,
        atom_max_neighbors=confidence_args.atom_max_neighbors,
        esm_embeddings_path="data/esm2_output",
        require_ligand=True,
        num_workers=1,
    )
    confidence_complex_dict = {d.name: d for d in confidence_test_dataset}
    for idx, orig_complex_graph in tqdm(enumerate(test_loader)):
        if (
            confidence_model is not None
            and not (
                confidence_args.use_original_model_cache
                or confidence_args.transfer_weights
            )
            and orig_complex_graph.name[0] not in confidence_complex_dict.keys()
        ):
            skipped += 1
            print(
                f"HAPPENING | The confidence dataset did not contain {orig_complex_graph.name[0]}. We are skipping this complex."
            )
            continue
        try:
            data_list = [copy.deepcopy(orig_complex_graph) for _ in range(N)]
            randomize_position(
                data_list,
                score_model_args.no_torsion,
                no_random,
                score_model_args.tr_sigma_max,
            )
            pdb = None
            lig = orig_complex_graph.mol[0]
            visualization_list = []
            for graph in data_list:
                pdb = PDBFile(lig)
                pdb.add(lig, 0, 0)
                pdb.add(
                    (
                        orig_complex_graph["ligand"].pos
                        + orig_complex_graph.original_center
                    )
                    .detach()
                    .cpu(),
                    1,
                    0,
                )
                pdb.add(
                    (graph["ligand"].pos + graph.original_center).detach().cpu(),
                    part=1,
                    order=1,
                )
                visualization_list.append(pdb)

            start_time = time.time()
            if confidence_model is not None and not (
                confidence_args.use_original_model_cache
                or confidence_args.transfer_weights
            ):
                confidence_data_list = [
                    copy.deepcopy(confidence_complex_dict[orig_complex_graph.name[0]])
                    for _ in range(N)
                ]
            else:
                confidence_data_list = None

            data_list, confidence = sampling(
                data_list=data_list,
                model=model,
                inference_steps=actual_steps,
                tr_schedule=tr_schedule,
                rot_schedule=rot_schedule,
                tor_schedule=tor_schedule,
                device=device,
                t_to_sigma=t_to_sigma,
                model_args=score_model_args,
                no_random=no_random,
                ode=ode,
                visualization_list=visualization_list,
                confidence_model=confidence_model,
                confidence_data_list=confidence_data_list,
                confidence_model_args=confidence_args,
                batch_size=1,
                no_final_step_noise=no_final_step_noise,
            )
            ligand_pos = np.asarray(
                [
                    complex_graph["ligand"].pos.cpu().numpy()
                    + orig_complex_graph.original_center.cpu().numpy()
                    for complex_graph in data_list
                ]
            )
            run_times.append(time.time() - start_time)

            if confidence is not None and isinstance(
                confidence_args.rmsd_classification_cutoff, list
            ):
                confidence = confidence[:, 0]
            if confidence is not None:
                confidence = confidence.cpu().numpy()
                re_order = np.argsort(confidence)[::-1]
                confidence = confidence[re_order]
                confidences_list.append(confidence)
                ligand_pos = ligand_pos[re_order]
            write_dir = (
                f'{out_dir}/index{idx}_{data_list[0]["name"][0].replace("/","-")}'
            )
            os.makedirs(write_dir, exist_ok=True)
            confidences = []
            for rank, pos in enumerate(ligand_pos):
                mol_pred = copy.deepcopy(lig)
                if score_model_args.remove_hs:
                    mol_pred = RemoveHs(mol_pred)
                if rank == 0:
                    write_mol_with_coords(
                        mol_pred, pos, os.path.join(write_dir, f"rank{rank+1}.sdf")
                    )
                confidences.append(confidence[rank])
                write_mol_with_coords(
                    mol_pred,
                    pos,
                    os.path.join(
                        write_dir, f"rank{rank+1}_confidence{confidence[rank]:.2f}.sdf"
                    ),
                )
            self_distances = np.linalg.norm(
                ligand_pos[:, :, None, :] - ligand_pos[:, None, :, :], axis=-1
            )
            self_distances = np.where(
                np.eye(self_distances.shape[2]), np.inf, self_distances
            )
            min_self_distances_list.append(np.min(self_distances, axis=(1, 2)))

            filenames = []
            if confidence is not None:
                for rank, batch_idx in enumerate(re_order):
                    visualization_list[batch_idx].write(
                        os.path.join(write_dir, f"rank{rank+1}_reverseprocess.pdb")
                    )
                    filenames.append(
                        os.path.join(write_dir, f"rank{rank+1}_reverseprocess.pdb")
                    )
            else:
                for rank, batch_idx in enumerate(ligand_pos):
                    visualization_list[batch_idx].write(
                        os.path.join(write_dir, f"rank{rank+1}_reverseprocess.pdb")
                    )
                    filenames.append(
                        os.path.join(write_dir, f"rank{rank+1}_reverseprocess.pdb")
                    )
            names_list.append(orig_complex_graph.name[0])
        except Exception as e:
            print("Failed on", orig_complex_graph["name"], e)
            failures += 1
            return None
    # zip outputs
    zippath = shutil.make_archive(
        os.path.join("results", os.path.basename(pdb_path)), "zip", write_dir
    )
    print("Zipped outputs to", zippath)
    labels = [
        f"rank {i+1}, confidence {confidences[i]:.2f}" for i in range(len(filenames))
    ]

    torch.cuda.empty_cache()
    return (
        molecule(pdb_path, filenames[0], ligand_file),
        gr.Dropdown.update(choices=labels, value=labels[0]),
        filenames,
        pdb_path,
        zippath,
    )


def updateView(out, filenames, pdb, ligand_file):
    print("updating view")
    i = out  # int(out.replace("rank", ""))
    print(i)
    i = int(i.split(",")[0].replace("rank", "")) - 1
    return molecule(pdb, filenames[i], ligand_file)


demo = gr.Blocks()

with demo:
    gr.Markdown("# DiffDock")
    gr.Markdown(
        ">**DiffDock: Diffusion Steps, Twists, and Turns for Molecular Docking**, Corso, Gabriele and Stärk, Hannes and Jing, Bowen and Barzilay, Regina and Jaakkola, Tommi, arXiv:2210.01776  [GitHub](https://github.com/gcorso/diffdock)"
    )
    gr.Markdown("")
    with gr.Box():
        with gr.Row():
            with gr.Column():
                gr.Markdown("## Protein")
                inp = gr.Textbox(
                    placeholder="PDB Code or upload file below", label="Input structure"
                )
                file = gr.File(file_count="single", label="Input PDB")
            with gr.Column():
                gr.Markdown("## Ligand")
                ligand_inp = gr.Textbox(
                    placeholder="Provide SMILES input or upload mol2/sdf file below",
                    label="SMILES string",
                )
                ligand_file = gr.File(file_count="single", label="Input Ligand")
        n_it = gr.Slider(value=20,
            minimum=10, maximum=40, label="Number of inference steps", step=1
        )
        actual_steps = gr.Slider(value=18,
            minimum=10, maximum=40, label="Number of actual inference steps", step=1
        )
        n_samples = gr.Slider(value=40,
            minimum=10, maximum=40, label="Number of samples", step=1
        )
        no_final_step_noise = gr.Checkbox(value=True,label="No final step noise"
        )

    btn = gr.Button("Run predictions")

    gr.Markdown("## Output")
    pdb = gr.Variable()
    filenames = gr.Variable()
    out = gr.Dropdown(interactive=True, label="Ranked samples")
    mol = gr.HTML()
    output_file = gr.File(file_count="single", label="Output files")
    gr.Examples(
        [
            [
                "6w70",
                "examples/6w70.pdb",
                "COc1ccc(cc1)n2c3c(c(n2)C(=O)N)CCN(C3=O)c4ccc(cc4)N5CCCCC5=O",
                "examples/6w70_ligand.sdf",
                20,
                10,
                18,
                True
            ],
            [
                "6moa",
                "examples/6moa_protein_processed.pdb",
                "",
                "examples/6moa_ligand.sdf",
                20,
                10,
                18,
                True
            ],
            [
                "",
                "examples/6o5u_protein_processed.pdb",
                "",
                "examples/6o5u_ligand.sdf",
                20,
                10,
                18,
                True
            ],
            [
                "",
                "examples/6o5u_protein_processed.pdb",
                "[NH3+]C[C@H]1O[C@H](O[C@@H]2[C@@H]([NH3+])C[C@H]([C@@H]([C@H]2O)O[C@H]2O[C@H](CO)[C@H]([C@@H]([C@H]2O)[NH3+])O)[NH3+])[C@@H]([C@H]([C@@H]1O)O)O",
                "examples/6o5u_ligand.sdf",
                20,
                10,
                18,
                True
            ],
            [
                "",
                "examples/6o5u_protein_processed.pdb",
                "",
                "examples/6o5u_ligand.sdf",
                20,
                10,
                18,
                True
            ],
            [
                "",
                "examples/6ahs_protein_processed.pdb",
                "",
                "examples/6ahs_ligand.sdf",
                20,
                10,
                18,
                True
            ],
        ],
        [inp, file, ligand_inp, ligand_file, n_it, n_samples, actual_steps, no_final_step_noise],
        [mol, out, filenames, pdb, output_file],
        # fn=update,
        # cache_examples=True,
    )
    btn.click(
        fn=update,
        inputs=[inp, file, ligand_inp, ligand_file, n_it, n_samples, actual_steps, no_final_step_noise],
        outputs=[mol, out, filenames, pdb, output_file],
    )
    out.change(fn=updateView, inputs=[out, filenames, pdb, ligand_file], outputs=mol)
demo.launch()