File size: 16,616 Bytes
4a3f787
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
# This file needs to be ran in the TANKBind repository together with baseline_run_tankbind_parallel.sh

import sys
import time
from multiprocessing import Pool


import copy
import warnings
from argparse import ArgumentParser

from rdkit.Chem import AllChem, RemoveHs

from feature_utils import save_cleaned_protein, read_mol
from generation_utils import get_LAS_distance_constraint_mask, get_info_pred_distance, write_with_new_coords
import logging
from torch_geometric.loader import DataLoader
from tqdm import tqdm  # pip install tqdm if fails.
from model import get_model
# from utils import *
import torch


from data import TankBind_prediction

import os
import numpy as np
import pandas as pd
import rdkit.Chem as Chem
from feature_utils import generate_sdf_from_smiles_using_rdkit
from feature_utils import get_protein_feature
from Bio.PDB import PDBParser
from feature_utils import extract_torchdrug_feature_from_mol


def read_strings_from_txt(path):
    # every line will be one element of the returned list
    with open(path) as file:
        lines = file.readlines()
        return [line.rstrip() for line in lines]


def read_molecule(molecule_file, sanitize=False, calc_charges=False, remove_hs=False):
    if molecule_file.endswith('.mol2'):
        mol = Chem.MolFromMol2File(molecule_file, sanitize=False, removeHs=False)
    elif molecule_file.endswith('.sdf'):
        supplier = Chem.SDMolSupplier(molecule_file, sanitize=False, removeHs=False)
        mol = supplier[0]
    elif molecule_file.endswith('.pdbqt'):
        with open(molecule_file) as file:
            pdbqt_data = file.readlines()
        pdb_block = ''
        for line in pdbqt_data:
            pdb_block += '{}\n'.format(line[:66])
        mol = Chem.MolFromPDBBlock(pdb_block, sanitize=False, removeHs=False)
    elif molecule_file.endswith('.pdb'):
        mol = Chem.MolFromPDBFile(molecule_file, sanitize=False, removeHs=False)
    else:
        return ValueError('Expect the format of the molecule_file to be '
                          'one of .mol2, .sdf, .pdbqt and .pdb, got {}'.format(molecule_file))
    try:
        if sanitize or calc_charges:
            Chem.SanitizeMol(mol)

        if calc_charges:
            # Compute Gasteiger charges on the molecule.
            try:
                AllChem.ComputeGasteigerCharges(mol)
            except:
                warnings.warn('Unable to compute charges for the molecule.')

        if remove_hs:
            mol = Chem.RemoveHs(mol, sanitize=sanitize)
    except:
        return None

    return mol


def parallel_save_prediction(arguments):
    dataset, y_pred_list, chosen,rdkit_mol_path, result_folder, name = arguments
    for idx, line in chosen.iterrows():
        pocket_name = line['pocket_name']
        compound_name = line['compound_name']
        ligandName = compound_name.split("_")[1]
        dataset_index = line['dataset_index']
        coords = dataset[dataset_index].coords.to('cpu')
        protein_nodes_xyz = dataset[dataset_index].node_xyz.to('cpu')
        n_compound = coords.shape[0]
        n_protein = protein_nodes_xyz.shape[0]
        y_pred = y_pred_list[dataset_index].reshape(n_protein, n_compound).to('cpu')
        compound_pair_dis_constraint = torch.cdist(coords, coords)
        mol = Chem.MolFromMolFile(rdkit_mol_path)
        LAS_distance_constraint_mask = get_LAS_distance_constraint_mask(mol).bool()
        pred_dist_info = get_info_pred_distance(coords, y_pred, protein_nodes_xyz, compound_pair_dis_constraint,
                                                LAS_distance_constraint_mask=LAS_distance_constraint_mask,
                                                n_repeat=1, show_progress=False)

        toFile = f'{result_folder}/{name}_tankbind_chosen.sdf'
        new_coords = pred_dist_info.sort_values("loss")['coords'].iloc[0].astype(np.double)
        write_with_new_coords(mol, new_coords, toFile)

if __name__ == '__main__':
    tankbind_src_folder = "../tankbind"
    sys.path.insert(0, tankbind_src_folder)
    torch.set_num_threads(16)
    parser = ArgumentParser()
    parser.add_argument('--data_dir', type=str, default='/Users/hstark/projects/ligbind/data/PDBBind_processed', help='')
    parser.add_argument('--split_path', type=str, default='/Users/hstark/projects/ligbind/data/splits/timesplit_test', help='')
    parser.add_argument('--prank_path', type=str, default='/Users/hstark/projects/p2rank_2.3/prank', help='')
    parser.add_argument('--results_path', type=str, default='results/tankbind_results', help='')
    parser.add_argument('--skip_existing', action='store_true', default=False, help='')
    parser.add_argument('--skip_p2rank', action='store_true', default=False, help='')
    parser.add_argument('--skip_multiple_pocket_outputs', action='store_true', default=False, help='')
    parser.add_argument('--device', type=str, default='cpu', help='')
    parser.add_argument('--num_workers', type=int, default=1, help='')
    parser.add_argument('--parallel_id', type=int, default=0, help='')
    parser.add_argument('--parallel_tot', type=int, default=1, help='')
    args = parser.parse_args()

    device = args.device
    cache_path = "tankbind_cache"
    os.makedirs(cache_path, exist_ok=True)
    os.makedirs(args.results_path, exist_ok=True)



    logging.basicConfig(level=logging.INFO)
    model = get_model(0, logging, device)
    # re-dock model
    # modelFile = "../saved_models/re_dock.pt"
    # self-dock model
    modelFile = f"{tankbind_src_folder}/../saved_models/self_dock.pt"

    model.load_state_dict(torch.load(modelFile, map_location=device))
    _ = model.eval()
    batch_size = 5
    names = read_strings_from_txt(args.split_path)
    if args.parallel_tot > 1:
        size = len(names) // args.parallel_tot + 1
        names = names[args.parallel_id*size:(args.parallel_id+1)*size]
    rmsds = []

    forward_pass_time = []
    times_preprocess = []
    times_inference = []
    top_10_generation_time = []
    top_1_generation_time = []
    start_time = time.time()
    if not args.skip_p2rank:
        for name in names:
            if args.skip_existing and os.path.exists(f'{args.results_path}/{name}/{name}_tankbind_1.sdf'): continue
            print("Now processing: ", name)
            protein_path = f'{args.data_dir}/{name}/{name}_protein_processed.pdb'
            cleaned_protein_path = f"{cache_path}/{name}_protein_tankbind_cleaned.pdb"  # if you change this you also need to change below
            parser = PDBParser(QUIET=True)
            s = parser.get_structure(name, protein_path)
            c = s[0]
            clean_res_list, ligand_list = save_cleaned_protein(c, cleaned_protein_path)

        with open(f"{cache_path}/pdb_list_p2rank.txt", "w") as out:
            for name in names:
                out.write(f"{name}_protein_tankbind_cleaned.pdb\n")
        cmd = f"bash {args.prank_path} predict {cache_path}/pdb_list_p2rank.txt -o {cache_path}/p2rank -threads 4"
        os.system(cmd)
    times_preprocess.append(time.time() - start_time)
    p2_rank_time = time.time() - start_time




    list_to_parallelize = []
    for name in tqdm(names):
        single_preprocess_time = time.time()
        if args.skip_existing and os.path.exists(f'{args.results_path}/{name}/{name}_tankbind_1.sdf'): continue
        print("Now processing: ", name)
        protein_path = f'{args.data_dir}/{name}/{name}_protein_processed.pdb'
        ligand_path = f"{args.data_dir}/{name}/{name}_ligand.sdf"
        cleaned_protein_path = f"{cache_path}/{name}_protein_tankbind_cleaned.pdb"  # if you change this you also need to change below
        rdkit_mol_path = f"{cache_path}/{name}_rdkit_ligand.sdf"

        parser = PDBParser(QUIET=True)
        s = parser.get_structure(name, protein_path)
        c = s[0]
        clean_res_list, ligand_list = save_cleaned_protein(c, cleaned_protein_path)
        lig, _ = read_mol(f"{args.data_dir}/{name}/{name}_ligand.sdf", f"{args.data_dir}/{name}/{name}_ligand.mol2")

        lig = RemoveHs(lig)
        smiles = Chem.MolToSmiles(lig)
        generate_sdf_from_smiles_using_rdkit(smiles, rdkit_mol_path, shift_dis=0)

        parser = PDBParser(QUIET=True)
        s = parser.get_structure("x", cleaned_protein_path)
        res_list = list(s.get_residues())

        protein_dict = {}
        protein_dict[name] = get_protein_feature(res_list)
        compound_dict = {}

        mol = Chem.MolFromMolFile(rdkit_mol_path)
        compound_dict[name + f"_{name}" + "_rdkit"] = extract_torchdrug_feature_from_mol(mol, has_LAS_mask=True)

        info = []
        for compound_name in list(compound_dict.keys()):
            # use protein center as the block center.
            com = ",".join([str(a.round(3)) for a in protein_dict[name][0].mean(axis=0).numpy()])
            info.append([name, compound_name, "protein_center", com])

            p2rankFile = f"{cache_path}/p2rank/{name}_protein_tankbind_cleaned.pdb_predictions.csv"
            pocket = pd.read_csv(p2rankFile)
            pocket.columns = pocket.columns.str.strip()
            pocket_coms = pocket[['center_x', 'center_y', 'center_z']].values
            for ith_pocket, com in enumerate(pocket_coms):
                com = ",".join([str(a.round(3)) for a in com])
                info.append([name, compound_name, f"pocket_{ith_pocket + 1}", com])
        info = pd.DataFrame(info, columns=['protein_name', 'compound_name', 'pocket_name', 'pocket_com'])

        dataset_path = f"{cache_path}/{name}_dataset/"
        os.system(f"rm -r {dataset_path}")
        os.system(f"mkdir -p {dataset_path}")
        dataset = TankBind_prediction(dataset_path, data=info, protein_dict=protein_dict, compound_dict=compound_dict)

        # dataset = TankBind_prediction(dataset_path)
        times_preprocess.append(time.time() - single_preprocess_time)
        single_forward_pass_time = time.time()
        data_loader = DataLoader(dataset, batch_size=batch_size, follow_batch=['x', 'y', 'compound_pair'], shuffle=False,
                                 num_workers=0)
        affinity_pred_list = []
        y_pred_list = []
        for data in tqdm(data_loader):
            data = data.to(device)
            y_pred, affinity_pred = model(data)
            affinity_pred_list.append(affinity_pred.detach().cpu())
            for i in range(data.y_batch.max() + 1):
                y_pred_list.append((y_pred[data['y_batch'] == i]).detach().cpu())

        affinity_pred_list = torch.cat(affinity_pred_list)
        forward_pass_time.append(time.time() - single_forward_pass_time)
        output_info = copy.deepcopy(dataset.data)
        output_info['affinity'] = affinity_pred_list
        output_info['dataset_index'] = range(len(output_info))
        output_info_sorted = output_info.sort_values('affinity', ascending=False)


        result_folder = f'{args.results_path}/{name}'
        os.makedirs(result_folder, exist_ok=True)
        output_info_sorted.to_csv(f"{result_folder}/output_info_sorted_by_affinity.csv")

        if not args.skip_multiple_pocket_outputs:
            for idx, (dataframe_idx, line) in enumerate(copy.deepcopy(output_info_sorted).iterrows()):
                single_top10_generation_time = time.time()
                pocket_name = line['pocket_name']
                compound_name = line['compound_name']
                ligandName = compound_name.split("_")[1]
                coords = dataset[dataframe_idx].coords.to('cpu')
                protein_nodes_xyz = dataset[dataframe_idx].node_xyz.to('cpu')
                n_compound = coords.shape[0]
                n_protein = protein_nodes_xyz.shape[0]
                y_pred = y_pred_list[dataframe_idx].reshape(n_protein, n_compound).to('cpu')
                y = dataset[dataframe_idx].dis_map.reshape(n_protein, n_compound).to('cpu')
                compound_pair_dis_constraint = torch.cdist(coords, coords)
                mol = Chem.MolFromMolFile(rdkit_mol_path)
                LAS_distance_constraint_mask = get_LAS_distance_constraint_mask(mol).bool()
                pred_dist_info = get_info_pred_distance(coords, y_pred, protein_nodes_xyz, compound_pair_dis_constraint,
                                              LAS_distance_constraint_mask=LAS_distance_constraint_mask,
                                              n_repeat=1, show_progress=False)

                toFile = f'{result_folder}/{name}_tankbind_{idx}.sdf'
                new_coords = pred_dist_info.sort_values("loss")['coords'].iloc[0].astype(np.double)
                write_with_new_coords(mol, new_coords, toFile)
                if idx < 10:
                    top_10_generation_time.append(time.time() - single_top10_generation_time)
                if idx == 0:
                    top_1_generation_time.append(time.time() - single_top10_generation_time)

        output_info_chosen = copy.deepcopy(dataset.data)
        output_info_chosen['affinity'] = affinity_pred_list
        output_info_chosen['dataset_index'] = range(len(output_info_chosen))
        chosen = output_info_chosen.loc[
            output_info_chosen.groupby(['protein_name', 'compound_name'], sort=False)['affinity'].agg(
                'idxmax')].reset_index()

        list_to_parallelize.append((dataset, y_pred_list, chosen, rdkit_mol_path, result_folder, name))

    chosen_generation_start_time = time.time()
    if args.num_workers > 1:
        p = Pool(args.num_workers, maxtasksperchild=1)
        p.__enter__()
    with tqdm(total=len(list_to_parallelize), desc=f'running optimization {i}/{len(list_to_parallelize)}') as pbar:
        map_fn = p.imap_unordered if args.num_workers > 1 else map
        for t in map_fn(parallel_save_prediction, list_to_parallelize):
            pbar.update()
    if args.num_workers > 1: p.__exit__(None, None, None)
    chosen_generation_time = time.time() - chosen_generation_start_time
    """
        lig, _ = read_mol(f"{args.data_dir}/{name}/{name}_ligand.sdf", f"{args.data_dir}/{name}/{name}_ligand.mol2")
        sm = Chem.MolToSmiles(lig)
        m_order = list(lig.GetPropsAsDict(includePrivate=True, includeComputed=True)['_smilesAtomOutputOrder'])
        lig = Chem.RenumberAtoms(lig, m_order)
        lig = Chem.RemoveAllHs(lig)
        lig = RemoveHs(lig)
        true_ligand_pos = np.array(lig.GetConformer().GetPositions())
    
        toFile = f'{result_folder}/{name}_tankbind_chosen.sdf'
        mol_pred, _ = read_mol(toFile, None)
        sm = Chem.MolToSmiles(mol_pred)
        m_order = list(mol_pred.GetPropsAsDict(includePrivate=True, includeComputed=True)['_smilesAtomOutputOrder'])
        mol_pred = Chem.RenumberAtoms(mol_pred, m_order)
        mol_pred = RemoveHs(mol_pred)
        mol_pred_pos = np.array(mol_pred.GetConformer().GetPositions())
        rmsds.append(np.sqrt(((true_ligand_pos - mol_pred_pos) ** 2).sum(axis=1).mean(axis=0)))
        print(np.sqrt(((true_ligand_pos - mol_pred_pos) ** 2).sum(axis=1).mean(axis=0)))
    """
    forward_pass_time  = np.array(forward_pass_time).sum()
    times_preprocess  = np.array(times_preprocess).sum()
    times_inference  = np.array(times_inference).sum()
    top_10_generation_time  = np.array(top_10_generation_time).sum()
    top_1_generation_time  = np.array(top_1_generation_time).sum()

    rmsds = np.array(rmsds)

    print(f'forward_pass_time: {forward_pass_time}')
    print(f'times_preprocess: {times_preprocess}')
    print(f'times_inference: {times_inference}')
    print(f'top_10_generation_time: {top_10_generation_time}')
    print(f'top_1_generation_time: {top_1_generation_time}')
    print(f'chosen_generation_time: {chosen_generation_time}')
    print(f'rmsds_below_2: {(100 * (rmsds < 2).sum() / len(rmsds))}')
    print(f'p2rank Time: {p2_rank_time}')
    print(
        f'total_time: '
        f'{forward_pass_time + times_preprocess + times_inference + top_10_generation_time + top_1_generation_time + p2_rank_time}')

    with open(os.path.join(args.results_path, 'tankbind_log.log'), 'w') as file:
        file.write(f'forward_pass_time: {forward_pass_time}')
        file.write(f'times_preprocess: {times_preprocess}')
        file.write(f'times_inference: {times_inference}')
        file.write(f'top_10_generation_time: {top_10_generation_time}')
        file.write(f'top_1_generation_time: {top_1_generation_time}')
        file.write(f'rmsds_below_2: {(100 * (rmsds < 2).sum() / len(rmsds))}')
        file.write(f'p2rank Time: {p2_rank_time}')
        file.write(f'total_time: {forward_pass_time + times_preprocess + times_inference + top_10_generation_time + top_1_generation_time + p2_rank_time}')