Spaces:
Running
on
T4
Running
on
T4
File size: 16,616 Bytes
4a3f787 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 |
# This file needs to be ran in the TANKBind repository together with baseline_run_tankbind_parallel.sh
import sys
import time
from multiprocessing import Pool
import copy
import warnings
from argparse import ArgumentParser
from rdkit.Chem import AllChem, RemoveHs
from feature_utils import save_cleaned_protein, read_mol
from generation_utils import get_LAS_distance_constraint_mask, get_info_pred_distance, write_with_new_coords
import logging
from torch_geometric.loader import DataLoader
from tqdm import tqdm # pip install tqdm if fails.
from model import get_model
# from utils import *
import torch
from data import TankBind_prediction
import os
import numpy as np
import pandas as pd
import rdkit.Chem as Chem
from feature_utils import generate_sdf_from_smiles_using_rdkit
from feature_utils import get_protein_feature
from Bio.PDB import PDBParser
from feature_utils import extract_torchdrug_feature_from_mol
def read_strings_from_txt(path):
# every line will be one element of the returned list
with open(path) as file:
lines = file.readlines()
return [line.rstrip() for line in lines]
def read_molecule(molecule_file, sanitize=False, calc_charges=False, remove_hs=False):
if molecule_file.endswith('.mol2'):
mol = Chem.MolFromMol2File(molecule_file, sanitize=False, removeHs=False)
elif molecule_file.endswith('.sdf'):
supplier = Chem.SDMolSupplier(molecule_file, sanitize=False, removeHs=False)
mol = supplier[0]
elif molecule_file.endswith('.pdbqt'):
with open(molecule_file) as file:
pdbqt_data = file.readlines()
pdb_block = ''
for line in pdbqt_data:
pdb_block += '{}\n'.format(line[:66])
mol = Chem.MolFromPDBBlock(pdb_block, sanitize=False, removeHs=False)
elif molecule_file.endswith('.pdb'):
mol = Chem.MolFromPDBFile(molecule_file, sanitize=False, removeHs=False)
else:
return ValueError('Expect the format of the molecule_file to be '
'one of .mol2, .sdf, .pdbqt and .pdb, got {}'.format(molecule_file))
try:
if sanitize or calc_charges:
Chem.SanitizeMol(mol)
if calc_charges:
# Compute Gasteiger charges on the molecule.
try:
AllChem.ComputeGasteigerCharges(mol)
except:
warnings.warn('Unable to compute charges for the molecule.')
if remove_hs:
mol = Chem.RemoveHs(mol, sanitize=sanitize)
except:
return None
return mol
def parallel_save_prediction(arguments):
dataset, y_pred_list, chosen,rdkit_mol_path, result_folder, name = arguments
for idx, line in chosen.iterrows():
pocket_name = line['pocket_name']
compound_name = line['compound_name']
ligandName = compound_name.split("_")[1]
dataset_index = line['dataset_index']
coords = dataset[dataset_index].coords.to('cpu')
protein_nodes_xyz = dataset[dataset_index].node_xyz.to('cpu')
n_compound = coords.shape[0]
n_protein = protein_nodes_xyz.shape[0]
y_pred = y_pred_list[dataset_index].reshape(n_protein, n_compound).to('cpu')
compound_pair_dis_constraint = torch.cdist(coords, coords)
mol = Chem.MolFromMolFile(rdkit_mol_path)
LAS_distance_constraint_mask = get_LAS_distance_constraint_mask(mol).bool()
pred_dist_info = get_info_pred_distance(coords, y_pred, protein_nodes_xyz, compound_pair_dis_constraint,
LAS_distance_constraint_mask=LAS_distance_constraint_mask,
n_repeat=1, show_progress=False)
toFile = f'{result_folder}/{name}_tankbind_chosen.sdf'
new_coords = pred_dist_info.sort_values("loss")['coords'].iloc[0].astype(np.double)
write_with_new_coords(mol, new_coords, toFile)
if __name__ == '__main__':
tankbind_src_folder = "../tankbind"
sys.path.insert(0, tankbind_src_folder)
torch.set_num_threads(16)
parser = ArgumentParser()
parser.add_argument('--data_dir', type=str, default='/Users/hstark/projects/ligbind/data/PDBBind_processed', help='')
parser.add_argument('--split_path', type=str, default='/Users/hstark/projects/ligbind/data/splits/timesplit_test', help='')
parser.add_argument('--prank_path', type=str, default='/Users/hstark/projects/p2rank_2.3/prank', help='')
parser.add_argument('--results_path', type=str, default='results/tankbind_results', help='')
parser.add_argument('--skip_existing', action='store_true', default=False, help='')
parser.add_argument('--skip_p2rank', action='store_true', default=False, help='')
parser.add_argument('--skip_multiple_pocket_outputs', action='store_true', default=False, help='')
parser.add_argument('--device', type=str, default='cpu', help='')
parser.add_argument('--num_workers', type=int, default=1, help='')
parser.add_argument('--parallel_id', type=int, default=0, help='')
parser.add_argument('--parallel_tot', type=int, default=1, help='')
args = parser.parse_args()
device = args.device
cache_path = "tankbind_cache"
os.makedirs(cache_path, exist_ok=True)
os.makedirs(args.results_path, exist_ok=True)
logging.basicConfig(level=logging.INFO)
model = get_model(0, logging, device)
# re-dock model
# modelFile = "../saved_models/re_dock.pt"
# self-dock model
modelFile = f"{tankbind_src_folder}/../saved_models/self_dock.pt"
model.load_state_dict(torch.load(modelFile, map_location=device))
_ = model.eval()
batch_size = 5
names = read_strings_from_txt(args.split_path)
if args.parallel_tot > 1:
size = len(names) // args.parallel_tot + 1
names = names[args.parallel_id*size:(args.parallel_id+1)*size]
rmsds = []
forward_pass_time = []
times_preprocess = []
times_inference = []
top_10_generation_time = []
top_1_generation_time = []
start_time = time.time()
if not args.skip_p2rank:
for name in names:
if args.skip_existing and os.path.exists(f'{args.results_path}/{name}/{name}_tankbind_1.sdf'): continue
print("Now processing: ", name)
protein_path = f'{args.data_dir}/{name}/{name}_protein_processed.pdb'
cleaned_protein_path = f"{cache_path}/{name}_protein_tankbind_cleaned.pdb" # if you change this you also need to change below
parser = PDBParser(QUIET=True)
s = parser.get_structure(name, protein_path)
c = s[0]
clean_res_list, ligand_list = save_cleaned_protein(c, cleaned_protein_path)
with open(f"{cache_path}/pdb_list_p2rank.txt", "w") as out:
for name in names:
out.write(f"{name}_protein_tankbind_cleaned.pdb\n")
cmd = f"bash {args.prank_path} predict {cache_path}/pdb_list_p2rank.txt -o {cache_path}/p2rank -threads 4"
os.system(cmd)
times_preprocess.append(time.time() - start_time)
p2_rank_time = time.time() - start_time
list_to_parallelize = []
for name in tqdm(names):
single_preprocess_time = time.time()
if args.skip_existing and os.path.exists(f'{args.results_path}/{name}/{name}_tankbind_1.sdf'): continue
print("Now processing: ", name)
protein_path = f'{args.data_dir}/{name}/{name}_protein_processed.pdb'
ligand_path = f"{args.data_dir}/{name}/{name}_ligand.sdf"
cleaned_protein_path = f"{cache_path}/{name}_protein_tankbind_cleaned.pdb" # if you change this you also need to change below
rdkit_mol_path = f"{cache_path}/{name}_rdkit_ligand.sdf"
parser = PDBParser(QUIET=True)
s = parser.get_structure(name, protein_path)
c = s[0]
clean_res_list, ligand_list = save_cleaned_protein(c, cleaned_protein_path)
lig, _ = read_mol(f"{args.data_dir}/{name}/{name}_ligand.sdf", f"{args.data_dir}/{name}/{name}_ligand.mol2")
lig = RemoveHs(lig)
smiles = Chem.MolToSmiles(lig)
generate_sdf_from_smiles_using_rdkit(smiles, rdkit_mol_path, shift_dis=0)
parser = PDBParser(QUIET=True)
s = parser.get_structure("x", cleaned_protein_path)
res_list = list(s.get_residues())
protein_dict = {}
protein_dict[name] = get_protein_feature(res_list)
compound_dict = {}
mol = Chem.MolFromMolFile(rdkit_mol_path)
compound_dict[name + f"_{name}" + "_rdkit"] = extract_torchdrug_feature_from_mol(mol, has_LAS_mask=True)
info = []
for compound_name in list(compound_dict.keys()):
# use protein center as the block center.
com = ",".join([str(a.round(3)) for a in protein_dict[name][0].mean(axis=0).numpy()])
info.append([name, compound_name, "protein_center", com])
p2rankFile = f"{cache_path}/p2rank/{name}_protein_tankbind_cleaned.pdb_predictions.csv"
pocket = pd.read_csv(p2rankFile)
pocket.columns = pocket.columns.str.strip()
pocket_coms = pocket[['center_x', 'center_y', 'center_z']].values
for ith_pocket, com in enumerate(pocket_coms):
com = ",".join([str(a.round(3)) for a in com])
info.append([name, compound_name, f"pocket_{ith_pocket + 1}", com])
info = pd.DataFrame(info, columns=['protein_name', 'compound_name', 'pocket_name', 'pocket_com'])
dataset_path = f"{cache_path}/{name}_dataset/"
os.system(f"rm -r {dataset_path}")
os.system(f"mkdir -p {dataset_path}")
dataset = TankBind_prediction(dataset_path, data=info, protein_dict=protein_dict, compound_dict=compound_dict)
# dataset = TankBind_prediction(dataset_path)
times_preprocess.append(time.time() - single_preprocess_time)
single_forward_pass_time = time.time()
data_loader = DataLoader(dataset, batch_size=batch_size, follow_batch=['x', 'y', 'compound_pair'], shuffle=False,
num_workers=0)
affinity_pred_list = []
y_pred_list = []
for data in tqdm(data_loader):
data = data.to(device)
y_pred, affinity_pred = model(data)
affinity_pred_list.append(affinity_pred.detach().cpu())
for i in range(data.y_batch.max() + 1):
y_pred_list.append((y_pred[data['y_batch'] == i]).detach().cpu())
affinity_pred_list = torch.cat(affinity_pred_list)
forward_pass_time.append(time.time() - single_forward_pass_time)
output_info = copy.deepcopy(dataset.data)
output_info['affinity'] = affinity_pred_list
output_info['dataset_index'] = range(len(output_info))
output_info_sorted = output_info.sort_values('affinity', ascending=False)
result_folder = f'{args.results_path}/{name}'
os.makedirs(result_folder, exist_ok=True)
output_info_sorted.to_csv(f"{result_folder}/output_info_sorted_by_affinity.csv")
if not args.skip_multiple_pocket_outputs:
for idx, (dataframe_idx, line) in enumerate(copy.deepcopy(output_info_sorted).iterrows()):
single_top10_generation_time = time.time()
pocket_name = line['pocket_name']
compound_name = line['compound_name']
ligandName = compound_name.split("_")[1]
coords = dataset[dataframe_idx].coords.to('cpu')
protein_nodes_xyz = dataset[dataframe_idx].node_xyz.to('cpu')
n_compound = coords.shape[0]
n_protein = protein_nodes_xyz.shape[0]
y_pred = y_pred_list[dataframe_idx].reshape(n_protein, n_compound).to('cpu')
y = dataset[dataframe_idx].dis_map.reshape(n_protein, n_compound).to('cpu')
compound_pair_dis_constraint = torch.cdist(coords, coords)
mol = Chem.MolFromMolFile(rdkit_mol_path)
LAS_distance_constraint_mask = get_LAS_distance_constraint_mask(mol).bool()
pred_dist_info = get_info_pred_distance(coords, y_pred, protein_nodes_xyz, compound_pair_dis_constraint,
LAS_distance_constraint_mask=LAS_distance_constraint_mask,
n_repeat=1, show_progress=False)
toFile = f'{result_folder}/{name}_tankbind_{idx}.sdf'
new_coords = pred_dist_info.sort_values("loss")['coords'].iloc[0].astype(np.double)
write_with_new_coords(mol, new_coords, toFile)
if idx < 10:
top_10_generation_time.append(time.time() - single_top10_generation_time)
if idx == 0:
top_1_generation_time.append(time.time() - single_top10_generation_time)
output_info_chosen = copy.deepcopy(dataset.data)
output_info_chosen['affinity'] = affinity_pred_list
output_info_chosen['dataset_index'] = range(len(output_info_chosen))
chosen = output_info_chosen.loc[
output_info_chosen.groupby(['protein_name', 'compound_name'], sort=False)['affinity'].agg(
'idxmax')].reset_index()
list_to_parallelize.append((dataset, y_pred_list, chosen, rdkit_mol_path, result_folder, name))
chosen_generation_start_time = time.time()
if args.num_workers > 1:
p = Pool(args.num_workers, maxtasksperchild=1)
p.__enter__()
with tqdm(total=len(list_to_parallelize), desc=f'running optimization {i}/{len(list_to_parallelize)}') as pbar:
map_fn = p.imap_unordered if args.num_workers > 1 else map
for t in map_fn(parallel_save_prediction, list_to_parallelize):
pbar.update()
if args.num_workers > 1: p.__exit__(None, None, None)
chosen_generation_time = time.time() - chosen_generation_start_time
"""
lig, _ = read_mol(f"{args.data_dir}/{name}/{name}_ligand.sdf", f"{args.data_dir}/{name}/{name}_ligand.mol2")
sm = Chem.MolToSmiles(lig)
m_order = list(lig.GetPropsAsDict(includePrivate=True, includeComputed=True)['_smilesAtomOutputOrder'])
lig = Chem.RenumberAtoms(lig, m_order)
lig = Chem.RemoveAllHs(lig)
lig = RemoveHs(lig)
true_ligand_pos = np.array(lig.GetConformer().GetPositions())
toFile = f'{result_folder}/{name}_tankbind_chosen.sdf'
mol_pred, _ = read_mol(toFile, None)
sm = Chem.MolToSmiles(mol_pred)
m_order = list(mol_pred.GetPropsAsDict(includePrivate=True, includeComputed=True)['_smilesAtomOutputOrder'])
mol_pred = Chem.RenumberAtoms(mol_pred, m_order)
mol_pred = RemoveHs(mol_pred)
mol_pred_pos = np.array(mol_pred.GetConformer().GetPositions())
rmsds.append(np.sqrt(((true_ligand_pos - mol_pred_pos) ** 2).sum(axis=1).mean(axis=0)))
print(np.sqrt(((true_ligand_pos - mol_pred_pos) ** 2).sum(axis=1).mean(axis=0)))
"""
forward_pass_time = np.array(forward_pass_time).sum()
times_preprocess = np.array(times_preprocess).sum()
times_inference = np.array(times_inference).sum()
top_10_generation_time = np.array(top_10_generation_time).sum()
top_1_generation_time = np.array(top_1_generation_time).sum()
rmsds = np.array(rmsds)
print(f'forward_pass_time: {forward_pass_time}')
print(f'times_preprocess: {times_preprocess}')
print(f'times_inference: {times_inference}')
print(f'top_10_generation_time: {top_10_generation_time}')
print(f'top_1_generation_time: {top_1_generation_time}')
print(f'chosen_generation_time: {chosen_generation_time}')
print(f'rmsds_below_2: {(100 * (rmsds < 2).sum() / len(rmsds))}')
print(f'p2rank Time: {p2_rank_time}')
print(
f'total_time: '
f'{forward_pass_time + times_preprocess + times_inference + top_10_generation_time + top_1_generation_time + p2_rank_time}')
with open(os.path.join(args.results_path, 'tankbind_log.log'), 'w') as file:
file.write(f'forward_pass_time: {forward_pass_time}')
file.write(f'times_preprocess: {times_preprocess}')
file.write(f'times_inference: {times_inference}')
file.write(f'top_10_generation_time: {top_10_generation_time}')
file.write(f'top_1_generation_time: {top_1_generation_time}')
file.write(f'rmsds_below_2: {(100 * (rmsds < 2).sum() / len(rmsds))}')
file.write(f'p2rank Time: {p2_rank_time}')
file.write(f'total_time: {forward_pass_time + times_preprocess + times_inference + top_10_generation_time + top_1_generation_time + p2_rank_time}')
|