File size: 21,428 Bytes
85bd48b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
# Copyright 2021 DeepMind Technologies Limited
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#      http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

"""Data for AlphaFold."""

from alphafold.common import residue_constants
from alphafold.model.tf import shape_helpers
from alphafold.model.tf import shape_placeholders
from alphafold.model.tf import utils
import numpy as np
import tensorflow.compat.v1 as tf

# Pylint gets confused by the curry1 decorator because it changes the number
#   of arguments to the function.
# pylint:disable=no-value-for-parameter


NUM_RES = shape_placeholders.NUM_RES
NUM_MSA_SEQ = shape_placeholders.NUM_MSA_SEQ
NUM_EXTRA_SEQ = shape_placeholders.NUM_EXTRA_SEQ
NUM_TEMPLATES = shape_placeholders.NUM_TEMPLATES


def cast_64bit_ints(protein):

  for k, v in protein.items():
    if v.dtype == tf.int64:
      protein[k] = tf.cast(v, tf.int32)
  return protein


_MSA_FEATURE_NAMES = [
    'msa', 'deletion_matrix', 'msa_mask', 'msa_row_mask', 'bert_mask',
    'true_msa'
]


def make_seq_mask(protein):
  protein['seq_mask'] = tf.ones(
      shape_helpers.shape_list(protein['aatype']), dtype=tf.float32)
  return protein


def make_template_mask(protein):
  protein['template_mask'] = tf.ones(
      shape_helpers.shape_list(protein['template_domain_names']),
      dtype=tf.float32)
  return protein


def curry1(f):
  """Supply all arguments but the first."""

  def fc(*args, **kwargs):
    return lambda x: f(x, *args, **kwargs)

  return fc


@curry1
def add_distillation_flag(protein, distillation):
  protein['is_distillation'] = tf.constant(float(distillation),
                                           shape=[],
                                           dtype=tf.float32)
  return protein


def make_all_atom_aatype(protein):
  protein['all_atom_aatype'] = protein['aatype']
  return protein


def fix_templates_aatype(protein):
  """Fixes aatype encoding of templates."""
  # Map one-hot to indices.
  protein['template_aatype'] = tf.argmax(
      protein['template_aatype'], output_type=tf.int32, axis=-1)
  # Map hhsearch-aatype to our aatype.
  new_order_list = residue_constants.MAP_HHBLITS_AATYPE_TO_OUR_AATYPE
  new_order = tf.constant(new_order_list, dtype=tf.int32)
  protein['template_aatype'] = tf.gather(params=new_order,
                                         indices=protein['template_aatype'])
  return protein


def correct_msa_restypes(protein):
  """Correct MSA restype to have the same order as residue_constants."""
  new_order_list = residue_constants.MAP_HHBLITS_AATYPE_TO_OUR_AATYPE
  new_order = tf.constant(new_order_list, dtype=protein['msa'].dtype)
  protein['msa'] = tf.gather(new_order, protein['msa'], axis=0)

  perm_matrix = np.zeros((22, 22), dtype=np.float32)
  perm_matrix[range(len(new_order_list)), new_order_list] = 1.

  for k in protein:
    if 'profile' in k:  # Include both hhblits and psiblast profiles
      num_dim = protein[k].shape.as_list()[-1]
      assert num_dim in [20, 21, 22], (
          'num_dim for %s out of expected range: %s' % (k, num_dim))
      protein[k] = tf.tensordot(protein[k], perm_matrix[:num_dim, :num_dim], 1)
  return protein


def squeeze_features(protein):
  """Remove singleton and repeated dimensions in protein features."""
  protein['aatype'] = tf.argmax(
      protein['aatype'], axis=-1, output_type=tf.int32)
  for k in [
      'domain_name', 'msa', 'num_alignments', 'seq_length', 'sequence',
      'superfamily', 'deletion_matrix', 'resolution',
      'between_segment_residues', 'residue_index', 'template_all_atom_masks']:
    if k in protein:
      final_dim = shape_helpers.shape_list(protein[k])[-1]
      if isinstance(final_dim, int) and final_dim == 1:
        protein[k] = tf.squeeze(protein[k], axis=-1)

  for k in ['seq_length', 'num_alignments']:
    if k in protein:
      protein[k] = protein[k][0]  # Remove fake sequence dimension
  return protein


def make_random_crop_to_size_seed(protein):
  """Random seed for cropping residues and templates."""
  protein['random_crop_to_size_seed'] = utils.make_random_seed()
  return protein


@curry1
def randomly_replace_msa_with_unknown(protein, replace_proportion):
  """Replace a proportion of the MSA with 'X'."""
  msa_mask = (tf.random.uniform(shape_helpers.shape_list(protein['msa'])) <
              replace_proportion)
  x_idx = 20
  gap_idx = 21
  msa_mask = tf.logical_and(msa_mask, protein['msa'] != gap_idx)
  protein['msa'] = tf.where(msa_mask,
                            tf.ones_like(protein['msa']) * x_idx,
                            protein['msa'])
  aatype_mask = (
      tf.random.uniform(shape_helpers.shape_list(protein['aatype'])) <
      replace_proportion)

  protein['aatype'] = tf.where(aatype_mask,
                               tf.ones_like(protein['aatype']) * x_idx,
                               protein['aatype'])
  return protein


@curry1
def sample_msa(protein, max_seq, keep_extra):
  """Sample MSA randomly, remaining sequences are stored as `extra_*`.

  Args:
    protein: batch to sample msa from.
    max_seq: number of sequences to sample.
    keep_extra: When True sequences not sampled are put into fields starting
      with 'extra_*'.

  Returns:
    Protein with sampled msa.
  """
  num_seq = tf.shape(protein['msa'])[0]
  shuffled = tf.random_shuffle(tf.range(1, num_seq))
  index_order = tf.concat([[0], shuffled], axis=0)
  num_sel = tf.minimum(max_seq, num_seq)

  sel_seq, not_sel_seq = tf.split(index_order, [num_sel, num_seq - num_sel])

  for k in _MSA_FEATURE_NAMES:
    if k in protein:
      if keep_extra:
        protein['extra_' + k] = tf.gather(protein[k], not_sel_seq)
      protein[k] = tf.gather(protein[k], sel_seq)

  return protein


@curry1
def crop_extra_msa(protein, max_extra_msa):
  """MSA features are cropped so only `max_extra_msa` sequences are kept."""
  num_seq = tf.shape(protein['extra_msa'])[0]
  num_sel = tf.minimum(max_extra_msa, num_seq)
  select_indices = tf.random_shuffle(tf.range(0, num_seq))[:num_sel]
  for k in _MSA_FEATURE_NAMES:
    if 'extra_' + k in protein:
      protein['extra_' + k] = tf.gather(protein['extra_' + k], select_indices)

  return protein


def delete_extra_msa(protein):
  for k in _MSA_FEATURE_NAMES:
    if 'extra_' + k in protein:
      del protein['extra_' + k]
  return protein


@curry1
def block_delete_msa(protein, config):
  """Sample MSA by deleting contiguous blocks.

  Jumper et al. (2021) Suppl. Alg. 1 "MSABlockDeletion"

  Arguments:
    protein: batch dict containing the msa
    config: ConfigDict with parameters

  Returns:
    updated protein
  """
  num_seq = shape_helpers.shape_list(protein['msa'])[0]
  block_num_seq = tf.cast(
      tf.floor(tf.cast(num_seq, tf.float32) * config.msa_fraction_per_block),
      tf.int32)

  if config.randomize_num_blocks:
    nb = tf.random.uniform([], 0, config.num_blocks + 1, dtype=tf.int32)
  else:
    nb = config.num_blocks

  del_block_starts = tf.random.uniform([nb], 0, num_seq, dtype=tf.int32)
  del_blocks = del_block_starts[:, None] + tf.range(block_num_seq)
  del_blocks = tf.clip_by_value(del_blocks, 0, num_seq - 1)
  del_indices = tf.unique(tf.sort(tf.reshape(del_blocks, [-1])))[0]

  # Make sure we keep the original sequence
  sparse_diff = tf.sets.difference(tf.range(1, num_seq)[None],
                                   del_indices[None])
  keep_indices = tf.squeeze(tf.sparse.to_dense(sparse_diff), 0)
  keep_indices = tf.concat([[0], keep_indices], axis=0)

  for k in _MSA_FEATURE_NAMES:
    if k in protein:
      protein[k] = tf.gather(protein[k], keep_indices)

  return protein


@curry1
def nearest_neighbor_clusters(protein, gap_agreement_weight=0.):
  """Assign each extra MSA sequence to its nearest neighbor in sampled MSA."""

  # Determine how much weight we assign to each agreement.  In theory, we could
  # use a full blosum matrix here, but right now let's just down-weight gap
  # agreement because it could be spurious.
  # Never put weight on agreeing on BERT mask
  weights = tf.concat([
      tf.ones(21),
      gap_agreement_weight * tf.ones(1),
      np.zeros(1)], 0)

  # Make agreement score as weighted Hamming distance
  sample_one_hot = (protein['msa_mask'][:, :, None] *
                    tf.one_hot(protein['msa'], 23))
  extra_one_hot = (protein['extra_msa_mask'][:, :, None] *
                   tf.one_hot(protein['extra_msa'], 23))

  num_seq, num_res, _ = shape_helpers.shape_list(sample_one_hot)
  extra_num_seq, _, _ = shape_helpers.shape_list(extra_one_hot)

  # Compute tf.einsum('mrc,nrc,c->mn', sample_one_hot, extra_one_hot, weights)
  # in an optimized fashion to avoid possible memory or computation blowup.
  agreement = tf.matmul(
      tf.reshape(extra_one_hot, [extra_num_seq, num_res * 23]),
      tf.reshape(sample_one_hot * weights, [num_seq, num_res * 23]),
      transpose_b=True)

  # Assign each sequence in the extra sequences to the closest MSA sample
  protein['extra_cluster_assignment'] = tf.argmax(
      agreement, axis=1, output_type=tf.int32)

  return protein


@curry1
def summarize_clusters(protein):
  """Produce profile and deletion_matrix_mean within each cluster."""
  num_seq = shape_helpers.shape_list(protein['msa'])[0]
  def csum(x):
    return tf.math.unsorted_segment_sum(
        x, protein['extra_cluster_assignment'], num_seq)

  mask = protein['extra_msa_mask']
  mask_counts = 1e-6 + protein['msa_mask'] + csum(mask)  # Include center

  msa_sum = csum(mask[:, :, None] * tf.one_hot(protein['extra_msa'], 23))
  msa_sum += tf.one_hot(protein['msa'], 23)  # Original sequence
  protein['cluster_profile'] = msa_sum / mask_counts[:, :, None]

  del msa_sum

  del_sum = csum(mask * protein['extra_deletion_matrix'])
  del_sum += protein['deletion_matrix']  # Original sequence
  protein['cluster_deletion_mean'] = del_sum / mask_counts
  del del_sum

  return protein


def make_msa_mask(protein):
  """Mask features are all ones, but will later be zero-padded."""
  protein['msa_mask'] = tf.ones(
      shape_helpers.shape_list(protein['msa']), dtype=tf.float32)
  protein['msa_row_mask'] = tf.ones(
      shape_helpers.shape_list(protein['msa'])[0], dtype=tf.float32)
  return protein


def pseudo_beta_fn(aatype, all_atom_positions, all_atom_masks):
  """Create pseudo beta features."""
  is_gly = tf.equal(aatype, residue_constants.restype_order['G'])
  ca_idx = residue_constants.atom_order['CA']
  cb_idx = residue_constants.atom_order['CB']
  pseudo_beta = tf.where(
      tf.tile(is_gly[..., None], [1] * len(is_gly.shape) + [3]),
      all_atom_positions[..., ca_idx, :],
      all_atom_positions[..., cb_idx, :])

  if all_atom_masks is not None:
    pseudo_beta_mask = tf.where(
        is_gly, all_atom_masks[..., ca_idx], all_atom_masks[..., cb_idx])
    pseudo_beta_mask = tf.cast(pseudo_beta_mask, tf.float32)
    return pseudo_beta, pseudo_beta_mask
  else:
    return pseudo_beta


@curry1
def make_pseudo_beta(protein, prefix=''):
  """Create pseudo-beta (alpha for glycine) position and mask."""
  assert prefix in ['', 'template_']
  protein[prefix + 'pseudo_beta'], protein[prefix + 'pseudo_beta_mask'] = (
      pseudo_beta_fn(
          protein['template_aatype' if prefix else 'all_atom_aatype'],
          protein[prefix + 'all_atom_positions'],
          protein['template_all_atom_masks' if prefix else 'all_atom_mask']))
  return protein


@curry1
def add_constant_field(protein, key, value):
  protein[key] = tf.convert_to_tensor(value)
  return protein


def shaped_categorical(probs, epsilon=1e-10):
  ds = shape_helpers.shape_list(probs)
  num_classes = ds[-1]
  counts = tf.random.categorical(
      tf.reshape(tf.log(probs + epsilon), [-1, num_classes]),
      1,
      dtype=tf.int32)
  return tf.reshape(counts, ds[:-1])


def make_hhblits_profile(protein):
  """Compute the HHblits MSA profile if not already present."""
  if 'hhblits_profile' in protein:
    return protein

  # Compute the profile for every residue (over all MSA sequences).
  protein['hhblits_profile'] = tf.reduce_mean(
      tf.one_hot(protein['msa'], 22), axis=0)
  return protein


@curry1
def make_masked_msa(protein, config, replace_fraction):
  """Create data for BERT on raw MSA."""
  # Add a random amino acid uniformly
  random_aa = tf.constant([0.05] * 20 + [0., 0.], dtype=tf.float32)

  categorical_probs = (
      config.uniform_prob * random_aa +
      config.profile_prob * protein['hhblits_profile'] +
      config.same_prob * tf.one_hot(protein['msa'], 22))

  # Put all remaining probability on [MASK] which is a new column
  pad_shapes = [[0, 0] for _ in range(len(categorical_probs.shape))]
  pad_shapes[-1][1] = 1
  mask_prob = 1. - config.profile_prob - config.same_prob - config.uniform_prob
  assert mask_prob >= 0.
  categorical_probs = tf.pad(
      categorical_probs, pad_shapes, constant_values=mask_prob)

  sh = shape_helpers.shape_list(protein['msa'])
  mask_position = tf.random.uniform(sh) < replace_fraction

  bert_msa = shaped_categorical(categorical_probs)
  bert_msa = tf.where(mask_position, bert_msa, protein['msa'])

  # Mix real and masked MSA
  protein['bert_mask'] = tf.cast(mask_position, tf.float32)
  protein['true_msa'] = protein['msa']
  protein['msa'] = bert_msa

  return protein


@curry1
def make_fixed_size(protein, shape_schema, msa_cluster_size, extra_msa_size,
                    num_res, num_templates=0):
  """Guess at the MSA and sequence dimensions to make fixed size."""

  pad_size_map = {
      NUM_RES: num_res,
      NUM_MSA_SEQ: msa_cluster_size,
      NUM_EXTRA_SEQ: extra_msa_size,
      NUM_TEMPLATES: num_templates,
  }

  for k, v in protein.items():
    # Don't transfer this to the accelerator.
    if k == 'extra_cluster_assignment':
      continue
    shape = v.shape.as_list()
    schema = shape_schema[k]
    assert len(shape) == len(schema), (
        f'Rank mismatch between shape and shape schema for {k}: '
        f'{shape} vs {schema}')
    pad_size = [
        pad_size_map.get(s2, None) or s1 for (s1, s2) in zip(shape, schema)
    ]
    padding = [(0, p - tf.shape(v)[i]) for i, p in enumerate(pad_size)]
    if padding:
      protein[k] = tf.pad(
          v, padding, name=f'pad_to_fixed_{k}')
      protein[k].set_shape(pad_size)

  return protein


@curry1
def make_msa_feat(protein):
  """Create and concatenate MSA features."""
  # Whether there is a domain break. Always zero for chains, but keeping
  # for compatibility with domain datasets.
  has_break = tf.clip_by_value(
      tf.cast(protein['between_segment_residues'], tf.float32),
      0, 1)
  aatype_1hot = tf.one_hot(protein['aatype'], 21, axis=-1)

  target_feat = [
      tf.expand_dims(has_break, axis=-1),
      aatype_1hot,  # Everyone gets the original sequence.
  ]

  msa_1hot = tf.one_hot(protein['msa'], 23, axis=-1)
  has_deletion = tf.clip_by_value(protein['deletion_matrix'], 0., 1.)
  deletion_value = tf.atan(protein['deletion_matrix'] / 3.) * (2. / np.pi)

  msa_feat = [
      msa_1hot,
      tf.expand_dims(has_deletion, axis=-1),
      tf.expand_dims(deletion_value, axis=-1),
  ]

  if 'cluster_profile' in protein:
    deletion_mean_value = (
        tf.atan(protein['cluster_deletion_mean'] / 3.) * (2. / np.pi))
    msa_feat.extend([
        protein['cluster_profile'],
        tf.expand_dims(deletion_mean_value, axis=-1),
    ])

  if 'extra_deletion_matrix' in protein:
    protein['extra_has_deletion'] = tf.clip_by_value(
        protein['extra_deletion_matrix'], 0., 1.)
    protein['extra_deletion_value'] = tf.atan(
        protein['extra_deletion_matrix'] / 3.) * (2. / np.pi)

  protein['msa_feat'] = tf.concat(msa_feat, axis=-1)
  protein['target_feat'] = tf.concat(target_feat, axis=-1)
  return protein


@curry1
def select_feat(protein, feature_list):
  return {k: v for k, v in protein.items() if k in feature_list}


@curry1
def crop_templates(protein, max_templates):
  for k, v in protein.items():
    if k.startswith('template_'):
      protein[k] = v[:max_templates]
  return protein


@curry1
def random_crop_to_size(protein, crop_size, max_templates, shape_schema,
                        subsample_templates=False):
  """Crop randomly to `crop_size`, or keep as is if shorter than that."""
  seq_length = protein['seq_length']
  if 'template_mask' in protein:
    num_templates = tf.cast(
        shape_helpers.shape_list(protein['template_mask'])[0], tf.int32)
  else:
    num_templates = tf.constant(0, dtype=tf.int32)
  num_res_crop_size = tf.math.minimum(seq_length, crop_size)

  # Ensures that the cropping of residues and templates happens in the same way
  # across ensembling iterations.
  # Do not use for randomness that should vary in ensembling.
  seed_maker = utils.SeedMaker(initial_seed=protein['random_crop_to_size_seed'])

  if subsample_templates:
    templates_crop_start = tf.random.stateless_uniform(
        shape=(), minval=0, maxval=num_templates + 1, dtype=tf.int32,
        seed=seed_maker())
  else:
    templates_crop_start = 0

  num_templates_crop_size = tf.math.minimum(
      num_templates - templates_crop_start, max_templates)

  num_res_crop_start = tf.random.stateless_uniform(
      shape=(), minval=0, maxval=seq_length - num_res_crop_size + 1,
      dtype=tf.int32, seed=seed_maker())

  templates_select_indices = tf.argsort(tf.random.stateless_uniform(
      [num_templates], seed=seed_maker()))

  for k, v in protein.items():
    if k not in shape_schema or (
        'template' not in k and NUM_RES not in shape_schema[k]):
      continue

    # randomly permute the templates before cropping them.
    if k.startswith('template') and subsample_templates:
      v = tf.gather(v, templates_select_indices)

    crop_sizes = []
    crop_starts = []
    for i, (dim_size, dim) in enumerate(zip(shape_schema[k],
                                            shape_helpers.shape_list(v))):
      is_num_res = (dim_size == NUM_RES)
      if i == 0 and k.startswith('template'):
        crop_size = num_templates_crop_size
        crop_start = templates_crop_start
      else:
        crop_start = num_res_crop_start if is_num_res else 0
        crop_size = (num_res_crop_size if is_num_res else
                     (-1 if dim is None else dim))
      crop_sizes.append(crop_size)
      crop_starts.append(crop_start)
    protein[k] = tf.slice(v, crop_starts, crop_sizes)

  protein['seq_length'] = num_res_crop_size
  return protein


def make_atom14_masks(protein):
  """Construct denser atom positions (14 dimensions instead of 37)."""
  restype_atom14_to_atom37 = []  # mapping (restype, atom14) --> atom37
  restype_atom37_to_atom14 = []  # mapping (restype, atom37) --> atom14
  restype_atom14_mask = []

  for rt in residue_constants.restypes:
    atom_names = residue_constants.restype_name_to_atom14_names[
        residue_constants.restype_1to3[rt]]

    restype_atom14_to_atom37.append([
        (residue_constants.atom_order[name] if name else 0)
        for name in atom_names
    ])

    atom_name_to_idx14 = {name: i for i, name in enumerate(atom_names)}
    restype_atom37_to_atom14.append([
        (atom_name_to_idx14[name] if name in atom_name_to_idx14 else 0)
        for name in residue_constants.atom_types
    ])

    restype_atom14_mask.append([(1. if name else 0.) for name in atom_names])

  # Add dummy mapping for restype 'UNK'
  restype_atom14_to_atom37.append([0] * 14)
  restype_atom37_to_atom14.append([0] * 37)
  restype_atom14_mask.append([0.] * 14)

  restype_atom14_to_atom37 = np.array(restype_atom14_to_atom37, dtype=np.int32)
  restype_atom37_to_atom14 = np.array(restype_atom37_to_atom14, dtype=np.int32)
  restype_atom14_mask = np.array(restype_atom14_mask, dtype=np.float32)

  # create the mapping for (residx, atom14) --> atom37, i.e. an array
  # with shape (num_res, 14) containing the atom37 indices for this protein
  residx_atom14_to_atom37 = tf.gather(restype_atom14_to_atom37,
                                      protein['aatype'])
  residx_atom14_mask = tf.gather(restype_atom14_mask,
                                 protein['aatype'])

  protein['atom14_atom_exists'] = residx_atom14_mask
  protein['residx_atom14_to_atom37'] = residx_atom14_to_atom37

  # create the gather indices for mapping back
  residx_atom37_to_atom14 = tf.gather(restype_atom37_to_atom14,
                                      protein['aatype'])
  protein['residx_atom37_to_atom14'] = residx_atom37_to_atom14

  # create the corresponding mask
  restype_atom37_mask = np.zeros([21, 37], dtype=np.float32)
  for restype, restype_letter in enumerate(residue_constants.restypes):
    restype_name = residue_constants.restype_1to3[restype_letter]
    atom_names = residue_constants.residue_atoms[restype_name]
    for atom_name in atom_names:
      atom_type = residue_constants.atom_order[atom_name]
      restype_atom37_mask[restype, atom_type] = 1

  residx_atom37_mask = tf.gather(restype_atom37_mask,
                                 protein['aatype'])
  protein['atom37_atom_exists'] = residx_atom37_mask

  return protein