File size: 17,388 Bytes
85bd48b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
# Copyright 2021 DeepMind Technologies Limited
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#      http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

"""Quaternion geometry modules.

This introduces a representation of coordinate frames that is based around a
‘QuatAffine’ object. This object describes an array of coordinate frames.
It consists of vectors corresponding to the
origin of the frames as well as orientations which are stored in two
ways, as unit quaternions as well as a rotation matrices.
The rotation matrices are derived from the unit quaternions and the two are kept
in sync.
For an explanation of the relation between unit quaternions and rotations see
https://en.wikipedia.org/wiki/Quaternions_and_spatial_rotation

This representation is used in the model for the backbone frames.

One important thing to note here, is that while we update both representations
the jit compiler is going to ensure that only the parts that are
actually used are executed.
"""


import functools
from typing import Tuple

import jax
import jax.numpy as jnp
import numpy as np

# pylint: disable=bad-whitespace
QUAT_TO_ROT = np.zeros((4, 4, 3, 3), dtype=np.float32)

QUAT_TO_ROT[0, 0] = [[ 1, 0, 0], [ 0, 1, 0], [ 0, 0, 1]]  # rr
QUAT_TO_ROT[1, 1] = [[ 1, 0, 0], [ 0,-1, 0], [ 0, 0,-1]]  # ii
QUAT_TO_ROT[2, 2] = [[-1, 0, 0], [ 0, 1, 0], [ 0, 0,-1]]  # jj
QUAT_TO_ROT[3, 3] = [[-1, 0, 0], [ 0,-1, 0], [ 0, 0, 1]]  # kk

QUAT_TO_ROT[1, 2] = [[ 0, 2, 0], [ 2, 0, 0], [ 0, 0, 0]]  # ij
QUAT_TO_ROT[1, 3] = [[ 0, 0, 2], [ 0, 0, 0], [ 2, 0, 0]]  # ik
QUAT_TO_ROT[2, 3] = [[ 0, 0, 0], [ 0, 0, 2], [ 0, 2, 0]]  # jk

QUAT_TO_ROT[0, 1] = [[ 0, 0, 0], [ 0, 0,-2], [ 0, 2, 0]]  # ir
QUAT_TO_ROT[0, 2] = [[ 0, 0, 2], [ 0, 0, 0], [-2, 0, 0]]  # jr
QUAT_TO_ROT[0, 3] = [[ 0,-2, 0], [ 2, 0, 0], [ 0, 0, 0]]  # kr

QUAT_MULTIPLY = np.zeros((4, 4, 4), dtype=np.float32)
QUAT_MULTIPLY[:, :, 0] = [[ 1, 0, 0, 0],
                          [ 0,-1, 0, 0],
                          [ 0, 0,-1, 0],
                          [ 0, 0, 0,-1]]

QUAT_MULTIPLY[:, :, 1] = [[ 0, 1, 0, 0],
                          [ 1, 0, 0, 0],
                          [ 0, 0, 0, 1],
                          [ 0, 0,-1, 0]]

QUAT_MULTIPLY[:, :, 2] = [[ 0, 0, 1, 0],
                          [ 0, 0, 0,-1],
                          [ 1, 0, 0, 0],
                          [ 0, 1, 0, 0]]

QUAT_MULTIPLY[:, :, 3] = [[ 0, 0, 0, 1],
                          [ 0, 0, 1, 0],
                          [ 0,-1, 0, 0],
                          [ 1, 0, 0, 0]]

QUAT_MULTIPLY_BY_VEC = QUAT_MULTIPLY[:, 1:, :]
# pylint: enable=bad-whitespace


def rot_to_quat(rot, unstack_inputs=False):
  """Convert rotation matrix to quaternion.

  Note that this function calls self_adjoint_eig which is extremely expensive on
  the GPU. If at all possible, this function should run on the CPU.

  Args:
     rot: rotation matrix (see below for format).
     unstack_inputs:  If true, rotation matrix should be shape (..., 3, 3)
       otherwise the rotation matrix should be a list of lists of tensors.

  Returns:
    Quaternion as (..., 4) tensor.
  """
  if unstack_inputs:
    rot = [jnp.moveaxis(x, -1, 0) for x in jnp.moveaxis(rot, -2, 0)]

  [[xx, xy, xz], [yx, yy, yz], [zx, zy, zz]] = rot

  # pylint: disable=bad-whitespace
  k = [[ xx + yy + zz,      zy - yz,      xz - zx,      yx - xy,],
       [      zy - yz, xx - yy - zz,      xy + yx,      xz + zx,],
       [      xz - zx,      xy + yx, yy - xx - zz,      yz + zy,],
       [      yx - xy,      xz + zx,      yz + zy, zz - xx - yy,]]
  # pylint: enable=bad-whitespace

  k = (1./3.) * jnp.stack([jnp.stack(x, axis=-1) for x in k],
                          axis=-2)

  # Get eigenvalues in non-decreasing order and associated.
  _, qs = jnp.linalg.eigh(k)
  return qs[..., -1]


def rot_list_to_tensor(rot_list):
  """Convert list of lists to rotation tensor."""
  return jnp.stack(
      [jnp.stack(rot_list[0], axis=-1),
       jnp.stack(rot_list[1], axis=-1),
       jnp.stack(rot_list[2], axis=-1)],
      axis=-2)


def vec_list_to_tensor(vec_list):
  """Convert list to vector tensor."""
  return jnp.stack(vec_list, axis=-1)


def quat_to_rot(normalized_quat):
  """Convert a normalized quaternion to a rotation matrix."""
  rot_tensor = jnp.sum(
      np.reshape(QUAT_TO_ROT, (4, 4, 9)) *
      normalized_quat[..., :, None, None] *
      normalized_quat[..., None, :, None],
      axis=(-3, -2))
  rot = jnp.moveaxis(rot_tensor, -1, 0)  # Unstack.
  return [[rot[0], rot[1], rot[2]],
          [rot[3], rot[4], rot[5]],
          [rot[6], rot[7], rot[8]]]


def quat_multiply_by_vec(quat, vec):
  """Multiply a quaternion by a pure-vector quaternion."""
  return jnp.sum(
      QUAT_MULTIPLY_BY_VEC *
      quat[..., :, None, None] *
      vec[..., None, :, None],
      axis=(-3, -2))


def quat_multiply(quat1, quat2):
  """Multiply a quaternion by another quaternion."""
  return jnp.sum(
      QUAT_MULTIPLY *
      quat1[..., :, None, None] *
      quat2[..., None, :, None],
      axis=(-3, -2))


def apply_rot_to_vec(rot, vec, unstack=False):
  """Multiply rotation matrix by a vector."""
  if unstack:
    x, y, z = [vec[:, i] for i in range(3)]
  else:
    x, y, z = vec
  return [rot[0][0] * x + rot[0][1] * y + rot[0][2] * z,
          rot[1][0] * x + rot[1][1] * y + rot[1][2] * z,
          rot[2][0] * x + rot[2][1] * y + rot[2][2] * z]


def apply_inverse_rot_to_vec(rot, vec):
  """Multiply the inverse of a rotation matrix by a vector."""
  # Inverse rotation is just transpose
  return [rot[0][0] * vec[0] + rot[1][0] * vec[1] + rot[2][0] * vec[2],
          rot[0][1] * vec[0] + rot[1][1] * vec[1] + rot[2][1] * vec[2],
          rot[0][2] * vec[0] + rot[1][2] * vec[1] + rot[2][2] * vec[2]]


class QuatAffine(object):
  """Affine transformation represented by quaternion and vector."""

  def __init__(self, quaternion, translation, rotation=None, normalize=True,
               unstack_inputs=False):
    """Initialize from quaternion and translation.

    Args:
      quaternion: Rotation represented by a quaternion, to be applied
        before translation.  Must be a unit quaternion unless normalize==True.
      translation: Translation represented as a vector.
      rotation: Same rotation as the quaternion, represented as a (..., 3, 3)
        tensor.  If None, rotation will be calculated from the quaternion.
      normalize: If True, l2 normalize the quaternion on input.
      unstack_inputs: If True, translation is a vector with last component 3
    """

    if quaternion is not None:
      assert quaternion.shape[-1] == 4

    if unstack_inputs:
      if rotation is not None:
        rotation = [jnp.moveaxis(x, -1, 0)   # Unstack.
                    for x in jnp.moveaxis(rotation, -2, 0)]  # Unstack.
      translation = jnp.moveaxis(translation, -1, 0)  # Unstack.

    if normalize and quaternion is not None:
      quaternion = quaternion / jnp.linalg.norm(quaternion, axis=-1,
                                                keepdims=True)

    if rotation is None:
      rotation = quat_to_rot(quaternion)

    self.quaternion = quaternion
    self.rotation = [list(row) for row in rotation]
    self.translation = list(translation)

    assert all(len(row) == 3 for row in self.rotation)
    assert len(self.translation) == 3

  def to_tensor(self):
    return jnp.concatenate(
        [self.quaternion] +
        [jnp.expand_dims(x, axis=-1) for x in self.translation],
        axis=-1)

  def apply_tensor_fn(self, tensor_fn):
    """Return a new QuatAffine with tensor_fn applied (e.g. stop_gradient)."""
    return QuatAffine(
        tensor_fn(self.quaternion),
        [tensor_fn(x) for x in self.translation],
        rotation=[[tensor_fn(x) for x in row] for row in self.rotation],
        normalize=False)

  def apply_rotation_tensor_fn(self, tensor_fn):
    """Return a new QuatAffine with tensor_fn applied to the rotation part."""
    return QuatAffine(
        tensor_fn(self.quaternion),
        [x for x in self.translation],
        rotation=[[tensor_fn(x) for x in row] for row in self.rotation],
        normalize=False)

  def scale_translation(self, position_scale):
    """Return a new quat affine with a different scale for translation."""

    return QuatAffine(
        self.quaternion,
        [x * position_scale for x in self.translation],
        rotation=[[x for x in row] for row in self.rotation],
        normalize=False)

  @classmethod
  def from_tensor(cls, tensor, normalize=False):
    quaternion, tx, ty, tz = jnp.split(tensor, [4, 5, 6], axis=-1)
    return cls(quaternion,
               [tx[..., 0], ty[..., 0], tz[..., 0]],
               normalize=normalize)

  def pre_compose(self, update):
    """Return a new QuatAffine which applies the transformation update first.

    Args:
      update: Length-6 vector. 3-vector of x, y, and z such that the quaternion
        update is (1, x, y, z) and zero for the 3-vector is the identity
        quaternion. 3-vector for translation concatenated.

    Returns:
      New QuatAffine object.
    """
    vector_quaternion_update, x, y, z = jnp.split(update, [3, 4, 5], axis=-1)
    trans_update = [jnp.squeeze(x, axis=-1),
                    jnp.squeeze(y, axis=-1),
                    jnp.squeeze(z, axis=-1)]

    new_quaternion = (self.quaternion +
                      quat_multiply_by_vec(self.quaternion,
                                           vector_quaternion_update))

    trans_update = apply_rot_to_vec(self.rotation, trans_update)
    new_translation = [
        self.translation[0] + trans_update[0],
        self.translation[1] + trans_update[1],
        self.translation[2] + trans_update[2]]

    return QuatAffine(new_quaternion, new_translation)

  def apply_to_point(self, point, extra_dims=0):
    """Apply affine to a point.

    Args:
      point: List of 3 tensors to apply affine.
      extra_dims:  Number of dimensions at the end of the transformed_point
        shape that are not present in the rotation and translation.  The most
        common use is rotation N points at once with extra_dims=1 for use in a
        network.

    Returns:
      Transformed point after applying affine.
    """
    rotation = self.rotation
    translation = self.translation
    for _ in range(extra_dims):
      expand_fn = functools.partial(jnp.expand_dims, axis=-1)
      rotation = jax.tree_map(expand_fn, rotation)
      translation = jax.tree_map(expand_fn, translation)

    rot_point = apply_rot_to_vec(rotation, point)
    return [
        rot_point[0] + translation[0],
        rot_point[1] + translation[1],
        rot_point[2] + translation[2]]

  def invert_point(self, transformed_point, extra_dims=0):
    """Apply inverse of transformation to a point.

    Args:
      transformed_point: List of 3 tensors to apply affine
      extra_dims:  Number of dimensions at the end of the transformed_point
        shape that are not present in the rotation and translation.  The most
        common use is rotation N points at once with extra_dims=1 for use in a
        network.

    Returns:
      Transformed point after applying affine.
    """
    rotation = self.rotation
    translation = self.translation
    for _ in range(extra_dims):
      expand_fn = functools.partial(jnp.expand_dims, axis=-1)
      rotation = jax.tree_map(expand_fn, rotation)
      translation = jax.tree_map(expand_fn, translation)

    rot_point = [
        transformed_point[0] - translation[0],
        transformed_point[1] - translation[1],
        transformed_point[2] - translation[2]]

    return apply_inverse_rot_to_vec(rotation, rot_point)

  def __repr__(self):
    return 'QuatAffine(%r, %r)' % (self.quaternion, self.translation)


def _multiply(a, b):
  return jnp.stack([
      jnp.array([a[0][0]*b[0][0] + a[0][1]*b[1][0] + a[0][2]*b[2][0],
                 a[0][0]*b[0][1] + a[0][1]*b[1][1] + a[0][2]*b[2][1],
                 a[0][0]*b[0][2] + a[0][1]*b[1][2] + a[0][2]*b[2][2]]),

      jnp.array([a[1][0]*b[0][0] + a[1][1]*b[1][0] + a[1][2]*b[2][0],
                 a[1][0]*b[0][1] + a[1][1]*b[1][1] + a[1][2]*b[2][1],
                 a[1][0]*b[0][2] + a[1][1]*b[1][2] + a[1][2]*b[2][2]]),

      jnp.array([a[2][0]*b[0][0] + a[2][1]*b[1][0] + a[2][2]*b[2][0],
                 a[2][0]*b[0][1] + a[2][1]*b[1][1] + a[2][2]*b[2][1],
                 a[2][0]*b[0][2] + a[2][1]*b[1][2] + a[2][2]*b[2][2]])])


def make_canonical_transform(
    n_xyz: jnp.ndarray,
    ca_xyz: jnp.ndarray,
    c_xyz: jnp.ndarray) -> Tuple[jnp.ndarray, jnp.ndarray]:
  """Returns translation and rotation matrices to canonicalize residue atoms.

  Note that this method does not take care of symmetries. If you provide the
  atom positions in the non-standard way, the N atom will end up not at
  [-0.527250, 1.359329, 0.0] but instead at [-0.527250, -1.359329, 0.0]. You
  need to take care of such cases in your code.

  Args:
    n_xyz: An array of shape [batch, 3] of nitrogen xyz coordinates.
    ca_xyz: An array of shape [batch, 3] of carbon alpha xyz coordinates.
    c_xyz: An array of shape [batch, 3] of carbon xyz coordinates.

  Returns:
    A tuple (translation, rotation) where:
      translation is an array of shape [batch, 3] defining the translation.
      rotation is an array of shape [batch, 3, 3] defining the rotation.
    After applying the translation and rotation to all atoms in a residue:
      * All atoms will be shifted so that CA is at the origin,
      * All atoms will be rotated so that C is at the x-axis,
      * All atoms will be shifted so that N is in the xy plane.
  """
  assert len(n_xyz.shape) == 2, n_xyz.shape
  assert n_xyz.shape[-1] == 3, n_xyz.shape
  assert n_xyz.shape == ca_xyz.shape == c_xyz.shape, (
      n_xyz.shape, ca_xyz.shape, c_xyz.shape)

  # Place CA at the origin.
  translation = -ca_xyz
  n_xyz = n_xyz + translation
  c_xyz = c_xyz + translation

  # Place C on the x-axis.
  c_x, c_y, c_z = [c_xyz[:, i] for i in range(3)]
  # Rotate by angle c1 in the x-y plane (around the z-axis).
  sin_c1 = -c_y / jnp.sqrt(1e-20 + c_x**2 + c_y**2)
  cos_c1 = c_x / jnp.sqrt(1e-20 + c_x**2 + c_y**2)
  zeros = jnp.zeros_like(sin_c1)
  ones = jnp.ones_like(sin_c1)
  # pylint: disable=bad-whitespace
  c1_rot_matrix = jnp.stack([jnp.array([cos_c1, -sin_c1, zeros]),
                             jnp.array([sin_c1,  cos_c1, zeros]),
                             jnp.array([zeros,    zeros,  ones])])

  # Rotate by angle c2 in the x-z plane (around the y-axis).
  sin_c2 = c_z / jnp.sqrt(1e-20 + c_x**2 + c_y**2 + c_z**2)
  cos_c2 = jnp.sqrt(c_x**2 + c_y**2) / jnp.sqrt(
      1e-20 + c_x**2 + c_y**2 + c_z**2)
  c2_rot_matrix = jnp.stack([jnp.array([cos_c2,  zeros, sin_c2]),
                             jnp.array([zeros,    ones,  zeros]),
                             jnp.array([-sin_c2, zeros, cos_c2])])

  c_rot_matrix = _multiply(c2_rot_matrix, c1_rot_matrix)
  n_xyz = jnp.stack(apply_rot_to_vec(c_rot_matrix, n_xyz, unstack=True)).T

  # Place N in the x-y plane.
  _, n_y, n_z = [n_xyz[:, i] for i in range(3)]
  # Rotate by angle alpha in the y-z plane (around the x-axis).
  sin_n = -n_z / jnp.sqrt(1e-20 + n_y**2 + n_z**2)
  cos_n = n_y / jnp.sqrt(1e-20 + n_y**2 + n_z**2)
  n_rot_matrix = jnp.stack([jnp.array([ones,  zeros,  zeros]),
                            jnp.array([zeros, cos_n, -sin_n]),
                            jnp.array([zeros, sin_n,  cos_n])])
  # pylint: enable=bad-whitespace

  return (translation,
          jnp.transpose(_multiply(n_rot_matrix, c_rot_matrix), [2, 0, 1]))


def make_transform_from_reference(
    n_xyz: jnp.ndarray,
    ca_xyz: jnp.ndarray,
    c_xyz: jnp.ndarray) -> Tuple[jnp.ndarray, jnp.ndarray]:
  """Returns rotation and translation matrices to convert from reference.

  Note that this method does not take care of symmetries. If you provide the
  atom positions in the non-standard way, the N atom will end up not at
  [-0.527250, 1.359329, 0.0] but instead at [-0.527250, -1.359329, 0.0]. You
  need to take care of such cases in your code.

  Args:
    n_xyz: An array of shape [batch, 3] of nitrogen xyz coordinates.
    ca_xyz: An array of shape [batch, 3] of carbon alpha xyz coordinates.
    c_xyz: An array of shape [batch, 3] of carbon xyz coordinates.

  Returns:
    A tuple (rotation, translation) where:
      rotation is an array of shape [batch, 3, 3] defining the rotation.
      translation is an array of shape [batch, 3] defining the translation.
    After applying the translation and rotation to the reference backbone,
    the coordinates will approximately equal to the input coordinates.

    The order of translation and rotation differs from make_canonical_transform
    because the rotation from this function should be applied before the
    translation, unlike make_canonical_transform.
  """
  translation, rotation = make_canonical_transform(n_xyz, ca_xyz, c_xyz)
  return np.transpose(rotation, (0, 2, 1)), -translation