File size: 5,432 Bytes
85bd48b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
# Copyright 2021 DeepMind Technologies Limited
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#      http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

"""Functions for processing confidence metrics."""

from typing import Dict, Optional, Tuple
import numpy as np
import scipy.special


def compute_plddt(logits: np.ndarray) -> np.ndarray:
  """Computes per-residue pLDDT from logits.

  Args:
    logits: [num_res, num_bins] output from the PredictedLDDTHead.

  Returns:
    plddt: [num_res] per-residue pLDDT.
  """
  num_bins = logits.shape[-1]
  bin_width = 1.0 / num_bins
  bin_centers = np.arange(start=0.5 * bin_width, stop=1.0, step=bin_width)
  probs = scipy.special.softmax(logits, axis=-1)
  predicted_lddt_ca = np.sum(probs * bin_centers[None, :], axis=-1)
  return predicted_lddt_ca * 100


def _calculate_bin_centers(breaks: np.ndarray):
  """Gets the bin centers from the bin edges.

  Args:
    breaks: [num_bins - 1] the error bin edges.

  Returns:
    bin_centers: [num_bins] the error bin centers.
  """
  step = (breaks[1] - breaks[0])

  # Add half-step to get the center
  bin_centers = breaks + step / 2
  # Add a catch-all bin at the end.
  bin_centers = np.concatenate([bin_centers, [bin_centers[-1] + step]],
                               axis=0)
  return bin_centers


def _calculate_expected_aligned_error(
    alignment_confidence_breaks: np.ndarray,
    aligned_distance_error_probs: np.ndarray) -> Tuple[np.ndarray, np.ndarray]:
  """Calculates expected aligned distance errors for every pair of residues.

  Args:
    alignment_confidence_breaks: [num_bins - 1] the error bin edges.
    aligned_distance_error_probs: [num_res, num_res, num_bins] the predicted
      probs for each error bin, for each pair of residues.

  Returns:
    predicted_aligned_error: [num_res, num_res] the expected aligned distance
      error for each pair of residues.
    max_predicted_aligned_error: The maximum predicted error possible.
  """
  bin_centers = _calculate_bin_centers(alignment_confidence_breaks)

  # Tuple of expected aligned distance error and max possible error.
  return (np.sum(aligned_distance_error_probs * bin_centers, axis=-1),
          np.asarray(bin_centers[-1]))


def compute_predicted_aligned_error(
    logits: np.ndarray,
    breaks: np.ndarray) -> Dict[str, np.ndarray]:
  """Computes aligned confidence metrics from logits.

  Args:
    logits: [num_res, num_res, num_bins] the logits output from
      PredictedAlignedErrorHead.
    breaks: [num_bins - 1] the error bin edges.

  Returns:
    aligned_confidence_probs: [num_res, num_res, num_bins] the predicted
      aligned error probabilities over bins for each residue pair.
    predicted_aligned_error: [num_res, num_res] the expected aligned distance
      error for each pair of residues.
    max_predicted_aligned_error: The maximum predicted error possible.
  """
  aligned_confidence_probs = scipy.special.softmax(
      logits,
      axis=-1)
  predicted_aligned_error, max_predicted_aligned_error = (
      _calculate_expected_aligned_error(
          alignment_confidence_breaks=breaks,
          aligned_distance_error_probs=aligned_confidence_probs))
  return {
      'aligned_confidence_probs': aligned_confidence_probs,
      'predicted_aligned_error': predicted_aligned_error,
      'max_predicted_aligned_error': max_predicted_aligned_error,
  }


def predicted_tm_score(
    logits: np.ndarray,
    breaks: np.ndarray,
    residue_weights: Optional[np.ndarray] = None) -> np.ndarray:
  """Computes predicted TM alignment score.

  Args:
    logits: [num_res, num_res, num_bins] the logits output from
      PredictedAlignedErrorHead.
    breaks: [num_bins] the error bins.
    residue_weights: [num_res] the per residue weights to use for the
      expectation.

  Returns:
    ptm_score: the predicted TM alignment score.
  """

  # residue_weights has to be in [0, 1], but can be floating-point, i.e. the
  # exp. resolved head's probability.
  if residue_weights is None:
    residue_weights = np.ones(logits.shape[0])

  bin_centers = _calculate_bin_centers(breaks)

  num_res = np.sum(residue_weights)
  # Clip num_res to avoid negative/undefined d0.
  clipped_num_res = max(num_res, 19)

  # Compute d_0(num_res) as defined by TM-score, eqn. (5) in
  # http://zhanglab.ccmb.med.umich.edu/papers/2004_3.pdf
  # Yang & Skolnick "Scoring function for automated
  # assessment of protein structure template quality" 2004
  d0 = 1.24 * (clipped_num_res - 15) ** (1./3) - 1.8

  # Convert logits to probs
  probs = scipy.special.softmax(logits, axis=-1)

  # TM-Score term for every bin
  tm_per_bin = 1. / (1 + np.square(bin_centers) / np.square(d0))
  # E_distances tm(distance)
  predicted_tm_term = np.sum(probs * tm_per_bin, axis=-1)

  normed_residue_mask = residue_weights / (1e-8 + residue_weights.sum())
  per_alignment = np.sum(predicted_tm_term * normed_residue_mask, axis=-1)
  return np.asarray(per_alignment[(per_alignment * residue_weights).argmax()])