File size: 23,389 Bytes
85bd48b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
# fmt: off

############################################
# imports
############################################
import jax
import requests
import hashlib
import tarfile
import time
import pickle
import os
import re

import random
import tqdm.notebook

import numpy as np
import matplotlib.pyplot as plt
import matplotlib
import matplotlib.patheffects
from matplotlib import collections as mcoll

try:
  import py3Dmol
except:
  pass

from string import ascii_uppercase,ascii_lowercase

pymol_color_list = ["#33ff33","#00ffff","#ff33cc","#ffff00","#ff9999","#e5e5e5","#7f7fff","#ff7f00",
                    "#7fff7f","#199999","#ff007f","#ffdd5e","#8c3f99","#b2b2b2","#007fff","#c4b200",
                    "#8cb266","#00bfbf","#b27f7f","#fcd1a5","#ff7f7f","#ffbfdd","#7fffff","#ffff7f",
                    "#00ff7f","#337fcc","#d8337f","#bfff3f","#ff7fff","#d8d8ff","#3fffbf","#b78c4c",
                    "#339933","#66b2b2","#ba8c84","#84bf00","#b24c66","#7f7f7f","#3f3fa5","#a5512b"]

pymol_cmap = matplotlib.colors.ListedColormap(pymol_color_list)
alphabet_list = list(ascii_uppercase+ascii_lowercase)

aatypes = set('ACDEFGHIKLMNPQRSTVWY')


###########################################
# control gpu/cpu memory usage
###########################################
def rm(x):
  '''remove data from device'''
  jax.tree_util.tree_map(lambda y: y.device_buffer.delete(), x)

def to(x,device="cpu"):
  '''move data to device'''
  d = jax.devices(device)[0]
  return jax.tree_util.tree_map(lambda y:jax.device_put(y,d), x)

def clear_mem(device="gpu"):
  '''remove all data from device'''
  backend = jax.lib.xla_bridge.get_backend(device)
  for buf in backend.live_buffers(): buf.delete()
    
##########################################
# call mmseqs2
##########################################

TQDM_BAR_FORMAT = '{l_bar}{bar}| {n_fmt}/{total_fmt} [elapsed: {elapsed} remaining: {remaining}]'

def run_mmseqs2(x, prefix, use_env=True, use_filter=True,
                use_templates=False, filter=None, host_url="https://a3m.mmseqs.com"):
  
  def submit(seqs, mode, N=101):    
    n,query = N,""
    for seq in seqs: 
      query += f">{n}\n{seq}\n"
      n += 1
      
    res = requests.post(f'{host_url}/ticket/msa', data={'q':query,'mode': mode})
    try: out = res.json()
    except ValueError: out = {"status":"UNKNOWN"}
    return out

  def status(ID):
    res = requests.get(f'{host_url}/ticket/{ID}')
    try: out = res.json()
    except ValueError: out = {"status":"UNKNOWN"}
    return out

  def download(ID, path):
    res = requests.get(f'{host_url}/result/download/{ID}')
    with open(path,"wb") as out: out.write(res.content)
  
  # process input x
  seqs = [x] if isinstance(x, str) else x
  
  # compatibility to old option
  if filter is not None:
    use_filter = filter
    
  # setup mode
  if use_filter:
    mode = "env" if use_env else "all"
  else:
    mode = "env-nofilter" if use_env else "nofilter"
  
  # define path
  path = f"{prefix}_{mode}"
  if not os.path.isdir(path): os.mkdir(path)

  # call mmseqs2 api
  tar_gz_file = f'{path}/out.tar.gz'
  N,REDO = 101,True
  
  # deduplicate and keep track of order
  seqs_unique = sorted(list(set(seqs)))
  Ms = [N+seqs_unique.index(seq) for seq in seqs]
  
  # lets do it!
  if not os.path.isfile(tar_gz_file):
    TIME_ESTIMATE = 150 * len(seqs_unique)
    with tqdm.notebook.tqdm(total=TIME_ESTIMATE, bar_format=TQDM_BAR_FORMAT) as pbar:
      while REDO:
        pbar.set_description("SUBMIT")
        
        # Resubmit job until it goes through
        out = submit(seqs_unique, mode, N)
        while out["status"] in ["UNKNOWN","RATELIMIT"]:
          # resubmit
          time.sleep(5 + random.randint(0,5))
          out = submit(seqs_unique, mode, N)

        if out["status"] == "ERROR":
          raise Exception(f'MMseqs2 API is giving errors. Please confirm your input is a valid protein sequence. If error persists, please try again an hour later.')

        if out["status"] == "MAINTENANCE":
          raise Exception(f'MMseqs2 API is undergoing maintenance. Please try again in a few minutes.')

        # wait for job to finish
        ID,TIME = out["id"],0
        pbar.set_description(out["status"])
        while out["status"] in ["UNKNOWN","RUNNING","PENDING"]:
          t = 5 + random.randint(0,5)
          time.sleep(t)
          out = status(ID)    
          pbar.set_description(out["status"])
          if out["status"] == "RUNNING":
            TIME += t
            pbar.update(n=t)
          #if TIME > 900 and out["status"] != "COMPLETE":
          #  # something failed on the server side, need to resubmit
          #  N += 1
          #  break
        
        if out["status"] == "COMPLETE":
          if TIME < TIME_ESTIMATE:
            pbar.update(n=(TIME_ESTIMATE-TIME))
          REDO = False

      # Download results
      download(ID, tar_gz_file)

  # prep list of a3m files
  a3m_files = [f"{path}/uniref.a3m"]
  if use_env: a3m_files.append(f"{path}/bfd.mgnify30.metaeuk30.smag30.a3m")
  
  # extract a3m files
  if not os.path.isfile(a3m_files[0]):
    with tarfile.open(tar_gz_file) as tar_gz:
      tar_gz.extractall(path)  

  # templates
  if use_templates:
    templates = {}
    print("seq\tpdb\tcid\tevalue")
    for line in open(f"{path}/pdb70.m8","r"):
      p = line.rstrip().split()
      M,pdb,qid,e_value = p[0],p[1],p[2],p[10]
      M = int(M)
      if M not in templates: templates[M] = []
      templates[M].append(pdb)
      if len(templates[M]) <= 20:
        print(f"{int(M)-N}\t{pdb}\t{qid}\t{e_value}")
    
    template_paths = {}
    for k,TMPL in templates.items():
      TMPL_PATH = f"{prefix}_{mode}/templates_{k}"
      if not os.path.isdir(TMPL_PATH):
        os.mkdir(TMPL_PATH)
        TMPL_LINE = ",".join(TMPL[:20])
        os.system(f"curl -s https://a3m-templates.mmseqs.com/template/{TMPL_LINE} | tar xzf - -C {TMPL_PATH}/")
        os.system(f"cp {TMPL_PATH}/pdb70_a3m.ffindex {TMPL_PATH}/pdb70_cs219.ffindex")
        os.system(f"touch {TMPL_PATH}/pdb70_cs219.ffdata")
      template_paths[k] = TMPL_PATH

  # gather a3m lines  
  a3m_lines = {}
  for a3m_file in a3m_files:
    update_M,M = True,None
    for line in open(a3m_file,"r"):
      if len(line) > 0:
        if "\x00" in line:
          line = line.replace("\x00","")
          update_M = True
        if line.startswith(">") and update_M:
          M = int(line[1:].rstrip())
          update_M = False
          if M not in a3m_lines: a3m_lines[M] = []
        a3m_lines[M].append(line)
  
  # return results
  a3m_lines = ["".join(a3m_lines[n]) for n in Ms]
  
  if use_templates:
    template_paths_ = [] 
    for n in Ms:
      if n not in template_paths:
        template_paths_.append(None)
        print(f"{n-N}\tno_templates_found")
      else:
        template_paths_.append(template_paths[n])
    template_paths = template_paths_

  if isinstance(x, str):
    return (a3m_lines[0], template_paths[0]) if use_templates else a3m_lines[0]
  else:
    return (a3m_lines, template_paths) if use_templates else a3m_lines


#########################################################################
# utils
#########################################################################
def get_hash(x):
  return hashlib.sha1(x.encode()).hexdigest()
  
def homooligomerize(msas, deletion_matrices, homooligomer=1):
 if homooligomer == 1:
  return msas, deletion_matrices
 else:
  new_msas = []
  new_mtxs = []
  for o in range(homooligomer):
    for msa,mtx in zip(msas, deletion_matrices):
      num_res = len(msa[0])
      L = num_res * o
      R = num_res * (homooligomer-(o+1))
      new_msas.append(["-"*L+s+"-"*R for s in msa])
      new_mtxs.append([[0]*L+m+[0]*R for m in mtx])
  return new_msas, new_mtxs

# keeping typo for cross-compatibility
def homooliomerize(msas, deletion_matrices, homooligomer=1):
  return homooligomerize(msas, deletion_matrices, homooligomer=homooligomer)

def homooligomerize_heterooligomer(msas, deletion_matrices, lengths, homooligomers):
  '''
  ----- inputs -----
  msas: list of msas
  deletion_matrices: list of deletion matrices
  lengths: list of lengths for each component in complex
  homooligomers: list of number of homooligomeric copies for each component
  ----- outputs -----
  (msas, deletion_matrices)
  '''
  if max(homooligomers) == 1:
    return msas, deletion_matrices
  
  elif len(homooligomers) == 1:
    return homooligomerize(msas, deletion_matrices, homooligomers[0])

  else:
    frag_ij = [[0,lengths[0]]]
    for length in lengths[1:]:
      j = frag_ij[-1][-1]
      frag_ij.append([j,j+length])

    # for every msa
    mod_msas, mod_mtxs = [],[]
    for msa, mtx in zip(msas, deletion_matrices):
      mod_msa, mod_mtx = [],[]
      # for every sequence
      for n,(s,m) in enumerate(zip(msa,mtx)):
        # split sequence
        _s,_m,_ok = [],[],[]
        for i,j in frag_ij:
          _s.append(s[i:j]); _m.append(m[i:j])
          _ok.append(max([o != "-" for o in _s[-1]]))

        if n == 0:
          # if first query sequence
          mod_msa.append("".join([x*h for x,h in zip(_s,homooligomers)]))
          mod_mtx.append(sum([x*h for x,h in zip(_m,homooligomers)],[]))

        elif sum(_ok) == 1:
          # elif one fragment: copy each fragment to every homooligomeric copy
          a = _ok.index(True)
          for h_a in range(homooligomers[a]):
            _blank_seq = [["-"*l]*h for l,h in zip(lengths,homooligomers)]
            _blank_mtx = [[[0]*l]*h for l,h in zip(lengths,homooligomers)]
            _blank_seq[a][h_a] = _s[a]
            _blank_mtx[a][h_a] = _m[a]
            mod_msa.append("".join(["".join(x) for x in _blank_seq]))
            mod_mtx.append(sum([sum(x,[]) for x in _blank_mtx],[]))
        else:
          # else: copy fragment pair to every homooligomeric copy pair
          for a in range(len(lengths)-1):
            if _ok[a]:
              for b in range(a+1,len(lengths)):
                if _ok[b]:
                  for h_a in range(homooligomers[a]):
                    for h_b in range(homooligomers[b]):
                      _blank_seq = [["-"*l]*h for l,h in zip(lengths,homooligomers)]
                      _blank_mtx = [[[0]*l]*h for l,h in zip(lengths,homooligomers)]
                      for c,h_c in zip([a,b],[h_a,h_b]):
                        _blank_seq[c][h_c] = _s[c]
                        _blank_mtx[c][h_c] = _m[c]
                      mod_msa.append("".join(["".join(x) for x in _blank_seq]))
                      mod_mtx.append(sum([sum(x,[]) for x in _blank_mtx],[]))
      mod_msas.append(mod_msa)
      mod_mtxs.append(mod_mtx)
    return mod_msas, mod_mtxs

def chain_break(idx_res, Ls, length=200):
  # Minkyung's code
  # add big enough number to residue index to indicate chain breaks
  L_prev = 0
  for L_i in Ls[:-1]:
    idx_res[L_prev+L_i:] += length
    L_prev += L_i      
  return idx_res

##################################################
# plotting
##################################################

def plot_plddt_legend(dpi=100):
  thresh = ['plDDT:','Very low (<50)','Low (60)','OK (70)','Confident (80)','Very high (>90)']
  plt.figure(figsize=(1,0.1),dpi=dpi)
  ########################################
  for c in ["#FFFFFF","#FF0000","#FFFF00","#00FF00","#00FFFF","#0000FF"]:
    plt.bar(0, 0, color=c)
  plt.legend(thresh, frameon=False,
             loc='center', ncol=6,
             handletextpad=1,
             columnspacing=1,
             markerscale=0.5,)
  plt.axis(False)
  return plt

def plot_ticks(Ls):
  Ln = sum(Ls)
  L_prev = 0
  for L_i in Ls[:-1]:
    L = L_prev + L_i
    L_prev += L_i
    plt.plot([0,Ln],[L,L],color="black")
    plt.plot([L,L],[0,Ln],color="black")
  ticks = np.cumsum([0]+Ls)
  ticks = (ticks[1:] + ticks[:-1])/2
  plt.yticks(ticks,alphabet_list[:len(ticks)])

def plot_confidence(plddt, pae=None, Ls=None, dpi=100):
  use_ptm = False if pae is None else True
  if use_ptm:
    plt.figure(figsize=(10,3), dpi=dpi)
    plt.subplot(1,2,1);
  else:
    plt.figure(figsize=(5,3), dpi=dpi)
  plt.title('Predicted lDDT')
  plt.plot(plddt)
  if Ls is not None:
    L_prev = 0
    for L_i in Ls[:-1]:
      L = L_prev + L_i
      L_prev += L_i
      plt.plot([L,L],[0,100],color="black")
  plt.ylim(0,100)
  plt.ylabel('plDDT')
  plt.xlabel('position')
  if use_ptm:
    plt.subplot(1,2,2);plt.title('Predicted Aligned Error')
    Ln = pae.shape[0]
    plt.imshow(pae,cmap="bwr",vmin=0,vmax=30,extent=(0, Ln, Ln, 0))
    if Ls is not None and len(Ls) > 1: plot_ticks(Ls)
    plt.colorbar()
    plt.xlabel('Scored residue')
    plt.ylabel('Aligned residue')
  return plt

def plot_msas(msas, ori_seq=None, sort_by_seqid=True, deduplicate=True, dpi=100, return_plt=True):
  '''
  plot the msas
  '''
  if ori_seq is None: ori_seq = msas[0][0]
  seqs = ori_seq.replace("/","").split(":")
  seqs_dash = ori_seq.replace(":","").split("/")

  Ln = np.cumsum(np.append(0,[len(seq) for seq in seqs]))
  Ln_dash = np.cumsum(np.append(0,[len(seq) for seq in seqs_dash]))
  Nn,lines = [],[]
  for msa in msas:
    msa_ = set(msa) if deduplicate else msa
    if len(msa_) > 0:
      Nn.append(len(msa_))
      msa_ = np.asarray([list(seq) for seq in msa_])
      gap_ = msa_ != "-"
      qid_ = msa_ == np.array(list("".join(seqs)))
      gapid = np.stack([gap_[:,Ln[i]:Ln[i+1]].max(-1) for i in range(len(seqs))],-1)
      seqid = np.stack([qid_[:,Ln[i]:Ln[i+1]].mean(-1) for i in range(len(seqs))],-1).sum(-1) / (gapid.sum(-1) + 1e-8)
      non_gaps = gap_.astype(np.float)
      non_gaps[non_gaps == 0] = np.nan
      if sort_by_seqid:
        lines.append(non_gaps[seqid.argsort()]*seqid[seqid.argsort(),None])
      else:
        lines.append(non_gaps[::-1] * seqid[::-1,None])

  Nn = np.cumsum(np.append(0,Nn))
  lines = np.concatenate(lines,0)

  if return_plt:
    plt.figure(figsize=(8,5),dpi=dpi)
    plt.title("Sequence coverage")
  plt.imshow(lines,
            interpolation='nearest', aspect='auto',
            cmap="rainbow_r", vmin=0, vmax=1, origin='lower',
            extent=(0, lines.shape[1], 0, lines.shape[0]))
  for i in Ln[1:-1]:
    plt.plot([i,i],[0,lines.shape[0]],color="black")
  for i in Ln_dash[1:-1]:
    plt.plot([i,i],[0,lines.shape[0]],"--",color="black")
  for j in Nn[1:-1]:
    plt.plot([0,lines.shape[1]],[j,j],color="black")

  plt.plot((np.isnan(lines) == False).sum(0), color='black')
  plt.xlim(0,lines.shape[1])
  plt.ylim(0,lines.shape[0])
  plt.colorbar(label="Sequence identity to query")
  plt.xlabel("Positions")
  plt.ylabel("Sequences")
  if return_plt: return plt

def read_pdb_renum(pdb_filename, Ls=None):
  if Ls is not None:
    L_init = 0
    new_chain = {}
    for L,c in zip(Ls, alphabet_list):
      new_chain.update({i:c for i in range(L_init,L_init+L)})
      L_init += L  

  n,pdb_out = 1,[]
  resnum_,chain_ = 1,"A"
  for line in open(pdb_filename,"r"):
    if line[:4] == "ATOM":
      chain = line[21:22]
      resnum = int(line[22:22+5])
      if resnum != resnum_ or chain != chain_:
        resnum_,chain_ = resnum,chain
        n += 1
      if Ls is None: pdb_out.append("%s%4i%s" % (line[:22],n,line[26:]))
      else: pdb_out.append("%s%s%4i%s" % (line[:21],new_chain[n-1],n,line[26:]))        
  return "".join(pdb_out)

def show_pdb(pred_output_path, show_sidechains=False, show_mainchains=False,
             color="lDDT", chains=None, Ls=None, vmin=50, vmax=90,
             color_HP=False, size=(800,480)):
  
  if chains is None:
    chains = 1 if Ls is None else len(Ls)

  view = py3Dmol.view(js='https://3dmol.org/build/3Dmol.js', width=size[0], height=size[1])
  view.addModel(read_pdb_renum(pred_output_path, Ls),'pdb')
  if color == "lDDT":
    view.setStyle({'cartoon': {'colorscheme': {'prop':'b','gradient': 'roygb','min':vmin,'max':vmax}}})
  elif color == "rainbow":
    view.setStyle({'cartoon': {'color':'spectrum'}})
  elif color == "chain":
    for n,chain,color in zip(range(chains),alphabet_list,pymol_color_list):
       view.setStyle({'chain':chain},{'cartoon': {'color':color}})
  if show_sidechains:
    BB = ['C','O','N']
    HP = ["ALA","GLY","VAL","ILE","LEU","PHE","MET","PRO","TRP","CYS","TYR"]
    if color_HP:
      view.addStyle({'and':[{'resn':HP},{'atom':BB,'invert':True}]},
                    {'stick':{'colorscheme':"yellowCarbon",'radius':0.3}})
      view.addStyle({'and':[{'resn':HP,'invert':True},{'atom':BB,'invert':True}]},
                    {'stick':{'colorscheme':"whiteCarbon",'radius':0.3}})
      view.addStyle({'and':[{'resn':"GLY"},{'atom':'CA'}]},
                    {'sphere':{'colorscheme':"yellowCarbon",'radius':0.3}})
      view.addStyle({'and':[{'resn':"PRO"},{'atom':['C','O'],'invert':True}]},
                    {'stick':{'colorscheme':"yellowCarbon",'radius':0.3}})
    else:
      view.addStyle({'and':[{'resn':["GLY","PRO"],'invert':True},{'atom':BB,'invert':True}]},
                    {'stick':{'colorscheme':f"WhiteCarbon",'radius':0.3}})
      view.addStyle({'and':[{'resn':"GLY"},{'atom':'CA'}]},
                    {'sphere':{'colorscheme':f"WhiteCarbon",'radius':0.3}})
      view.addStyle({'and':[{'resn':"PRO"},{'atom':['C','O'],'invert':True}]},
                    {'stick':{'colorscheme':f"WhiteCarbon",'radius':0.3}})  
  if show_mainchains:
    BB = ['C','O','N','CA']
    view.addStyle({'atom':BB},{'stick':{'colorscheme':f"WhiteCarbon",'radius':0.3}})
  view.zoomTo()
  return view

def plot_plddts(plddts, Ls=None, dpi=100, fig=True):
  if fig: plt.figure(figsize=(8,5),dpi=100)
  plt.title("Predicted lDDT per position")
  for n,plddt in enumerate(plddts):
    plt.plot(plddt,label=f"rank_{n+1}")
  if Ls is not None:
    L_prev = 0
    for L_i in Ls[:-1]:
      L = L_prev + L_i
      L_prev += L_i
      plt.plot([L,L],[0,100],color="black")
  plt.legend()
  plt.ylim(0,100)
  plt.ylabel("Predicted lDDT")
  plt.xlabel("Positions")
  return plt

def plot_paes(paes, Ls=None, dpi=100, fig=True):
  num_models = len(paes)
  if fig: plt.figure(figsize=(3*num_models,2), dpi=dpi)
  for n,pae in enumerate(paes):
    plt.subplot(1,num_models,n+1)
    plt.title(f"rank_{n+1}")
    Ln = pae.shape[0]
    plt.imshow(pae,cmap="bwr",vmin=0,vmax=30,extent=(0, Ln, Ln, 0))
    if Ls is not None and len(Ls) > 1: plot_ticks(Ls)
    plt.colorbar()
  return plt

def plot_adjs(adjs, Ls=None, dpi=100, fig=True):
  num_models = len(adjs)
  if fig: plt.figure(figsize=(3*num_models,2), dpi=dpi)
  for n,adj in enumerate(adjs):
    plt.subplot(1,num_models,n+1)
    plt.title(f"rank_{n+1}")
    Ln = adj.shape[0]
    plt.imshow(adj,cmap="binary",vmin=0,vmax=1,extent=(0, Ln, Ln, 0))
    if Ls is not None and len(Ls) > 1: plot_ticks(Ls)
    plt.colorbar()
  return plt

def plot_dists(dists, Ls=None, dpi=100, fig=True):
  num_models = len(dists)
  if fig: plt.figure(figsize=(3*num_models,2), dpi=dpi)
  for n,dist in enumerate(dists):
    plt.subplot(1,num_models,n+1)
    plt.title(f"rank_{n+1}")
    Ln = dist.shape[0]
    plt.imshow(dist,extent=(0, Ln, Ln, 0))
    if Ls is not None and len(Ls) > 1: plot_ticks(Ls)
    plt.colorbar()
  return plt

##########################################################################
##########################################################################

def kabsch(a, b, weights=None, return_v=False):
  a = np.asarray(a)
  b = np.asarray(b)
  if weights is None: weights = np.ones(len(b))
  else: weights = np.asarray(weights)
  B = np.einsum('ji,jk->ik', weights[:, None] * a, b)
  u, s, vh = np.linalg.svd(B)
  if np.linalg.det(u @ vh) < 0: u[:, -1] = -u[:, -1]
  if return_v: return u
  else: return u @ vh

def plot_pseudo_3D(xyz, c=None, ax=None, chainbreak=5,
                   cmap="gist_rainbow", line_w=2.0,
                   cmin=None, cmax=None, zmin=None, zmax=None):

  def rescale(a,amin=None,amax=None):
    a = np.copy(a)
    if amin is None: amin = a.min()
    if amax is None: amax = a.max()
    a[a < amin] = amin
    a[a > amax] = amax
    return (a - amin)/(amax - amin)

  # make segments
  xyz = np.asarray(xyz)
  seg = np.concatenate([xyz[:-1,None,:],xyz[1:,None,:]],axis=-2)
  seg_xy = seg[...,:2]
  seg_z = seg[...,2].mean(-1)
  ord = seg_z.argsort()

  # set colors
  if c is None: c = np.arange(len(seg))[::-1]
  else: c = (c[1:] + c[:-1])/2
  c = rescale(c,cmin,cmax)  

  if isinstance(cmap, str):
    if cmap == "gist_rainbow": c *= 0.75
    colors = matplotlib.cm.get_cmap(cmap)(c)
  else:
    colors = cmap(c)
  
  if chainbreak is not None:
    dist = np.linalg.norm(xyz[:-1] - xyz[1:], axis=-1)
    colors[...,3] = (dist < chainbreak).astype(np.float)

  # add shade/tint based on z-dimension
  z = rescale(seg_z,zmin,zmax)[:,None]
  tint, shade = z/3, (z+2)/3
  colors[:,:3] = colors[:,:3] + (1 - colors[:,:3]) * tint
  colors[:,:3] = colors[:,:3] * shade

  set_lim = False
  if ax is None:
    fig, ax = plt.subplots()
    fig.set_figwidth(5)
    fig.set_figheight(5)
    set_lim = True
  else:
    fig = ax.get_figure()
    if ax.get_xlim() == (0,1):
      set_lim = True
      
  if set_lim:
    xy_min = xyz[:,:2].min() - line_w
    xy_max = xyz[:,:2].max() + line_w
    ax.set_xlim(xy_min,xy_max)
    ax.set_ylim(xy_min,xy_max)

  ax.set_aspect('equal')
    
  # determine linewidths
  width = fig.bbox_inches.width * ax.get_position().width
  linewidths = line_w * 72 * width / np.diff(ax.get_xlim())

  lines = mcoll.LineCollection(seg_xy[ord], colors=colors[ord], linewidths=linewidths,
                               path_effects=[matplotlib.patheffects.Stroke(capstyle="round")])
  
  return ax.add_collection(lines)

def add_text(text, ax):
  return plt.text(0.5, 1.01, text, horizontalalignment='center',
                  verticalalignment='bottom', transform=ax.transAxes)

def plot_protein(protein=None, pos=None, plddt=None, Ls=None, dpi=100, best_view=True, line_w=2.0):
  
  if protein is not None:
    pos = np.asarray(protein.atom_positions[:,1,:])
    plddt = np.asarray(protein.b_factors[:,0])

  # get best view
  if best_view:
    if plddt is not None:
      weights = plddt/100
      pos = pos - (pos * weights[:,None]).sum(0,keepdims=True) / weights.sum()
      pos = pos @ kabsch(pos, pos, weights, return_v=True)
    else:
      pos = pos - pos.mean(0,keepdims=True)
      pos = pos @ kabsch(pos, pos, return_v=True)

  if plddt is not None:
    fig, (ax1, ax2) = plt.subplots(1,2)
    fig.set_figwidth(6); fig.set_figheight(3)
    ax = [ax1, ax2]
  else:
    fig, ax1 = plt.subplots(1,1)
    fig.set_figwidth(3); fig.set_figheight(3)
    ax = [ax1]
    
  fig.set_dpi(dpi)
  fig.subplots_adjust(top = 0.9, bottom = 0.1, right = 1, left = 0, hspace = 0, wspace = 0)

  xy_min = pos[...,:2].min() - line_w
  xy_max = pos[...,:2].max() + line_w
  for a in ax:
    a.set_xlim(xy_min, xy_max)
    a.set_ylim(xy_min, xy_max)
    a.axis(False)

  if Ls is None or len(Ls) == 1:
    # color N->C
    c = np.arange(len(pos))[::-1]
    plot_pseudo_3D(pos,  line_w=line_w, ax=ax1)
    add_text("colored by N→C", ax1)
  else:
    # color by chain
    c = np.concatenate([[n]*L for n,L in enumerate(Ls)])
    if len(Ls) > 40:   plot_pseudo_3D(pos, c=c, line_w=line_w, ax=ax1)
    else:              plot_pseudo_3D(pos, c=c, cmap=pymol_cmap, cmin=0, cmax=39, line_w=line_w, ax=ax1)
    add_text("colored by chain", ax1)
    
  if plddt is not None:
    # color by pLDDT
    plot_pseudo_3D(pos, c=plddt, cmin=50, cmax=90, line_w=line_w, ax=ax2)
    add_text("colored by pLDDT", ax2)

  return fig