Spaces:
Running
on
T4
Running
on
T4
File size: 23,389 Bytes
85bd48b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 |
# fmt: off
############################################
# imports
############################################
import jax
import requests
import hashlib
import tarfile
import time
import pickle
import os
import re
import random
import tqdm.notebook
import numpy as np
import matplotlib.pyplot as plt
import matplotlib
import matplotlib.patheffects
from matplotlib import collections as mcoll
try:
import py3Dmol
except:
pass
from string import ascii_uppercase,ascii_lowercase
pymol_color_list = ["#33ff33","#00ffff","#ff33cc","#ffff00","#ff9999","#e5e5e5","#7f7fff","#ff7f00",
"#7fff7f","#199999","#ff007f","#ffdd5e","#8c3f99","#b2b2b2","#007fff","#c4b200",
"#8cb266","#00bfbf","#b27f7f","#fcd1a5","#ff7f7f","#ffbfdd","#7fffff","#ffff7f",
"#00ff7f","#337fcc","#d8337f","#bfff3f","#ff7fff","#d8d8ff","#3fffbf","#b78c4c",
"#339933","#66b2b2","#ba8c84","#84bf00","#b24c66","#7f7f7f","#3f3fa5","#a5512b"]
pymol_cmap = matplotlib.colors.ListedColormap(pymol_color_list)
alphabet_list = list(ascii_uppercase+ascii_lowercase)
aatypes = set('ACDEFGHIKLMNPQRSTVWY')
###########################################
# control gpu/cpu memory usage
###########################################
def rm(x):
'''remove data from device'''
jax.tree_util.tree_map(lambda y: y.device_buffer.delete(), x)
def to(x,device="cpu"):
'''move data to device'''
d = jax.devices(device)[0]
return jax.tree_util.tree_map(lambda y:jax.device_put(y,d), x)
def clear_mem(device="gpu"):
'''remove all data from device'''
backend = jax.lib.xla_bridge.get_backend(device)
for buf in backend.live_buffers(): buf.delete()
##########################################
# call mmseqs2
##########################################
TQDM_BAR_FORMAT = '{l_bar}{bar}| {n_fmt}/{total_fmt} [elapsed: {elapsed} remaining: {remaining}]'
def run_mmseqs2(x, prefix, use_env=True, use_filter=True,
use_templates=False, filter=None, host_url="https://a3m.mmseqs.com"):
def submit(seqs, mode, N=101):
n,query = N,""
for seq in seqs:
query += f">{n}\n{seq}\n"
n += 1
res = requests.post(f'{host_url}/ticket/msa', data={'q':query,'mode': mode})
try: out = res.json()
except ValueError: out = {"status":"UNKNOWN"}
return out
def status(ID):
res = requests.get(f'{host_url}/ticket/{ID}')
try: out = res.json()
except ValueError: out = {"status":"UNKNOWN"}
return out
def download(ID, path):
res = requests.get(f'{host_url}/result/download/{ID}')
with open(path,"wb") as out: out.write(res.content)
# process input x
seqs = [x] if isinstance(x, str) else x
# compatibility to old option
if filter is not None:
use_filter = filter
# setup mode
if use_filter:
mode = "env" if use_env else "all"
else:
mode = "env-nofilter" if use_env else "nofilter"
# define path
path = f"{prefix}_{mode}"
if not os.path.isdir(path): os.mkdir(path)
# call mmseqs2 api
tar_gz_file = f'{path}/out.tar.gz'
N,REDO = 101,True
# deduplicate and keep track of order
seqs_unique = sorted(list(set(seqs)))
Ms = [N+seqs_unique.index(seq) for seq in seqs]
# lets do it!
if not os.path.isfile(tar_gz_file):
TIME_ESTIMATE = 150 * len(seqs_unique)
with tqdm.notebook.tqdm(total=TIME_ESTIMATE, bar_format=TQDM_BAR_FORMAT) as pbar:
while REDO:
pbar.set_description("SUBMIT")
# Resubmit job until it goes through
out = submit(seqs_unique, mode, N)
while out["status"] in ["UNKNOWN","RATELIMIT"]:
# resubmit
time.sleep(5 + random.randint(0,5))
out = submit(seqs_unique, mode, N)
if out["status"] == "ERROR":
raise Exception(f'MMseqs2 API is giving errors. Please confirm your input is a valid protein sequence. If error persists, please try again an hour later.')
if out["status"] == "MAINTENANCE":
raise Exception(f'MMseqs2 API is undergoing maintenance. Please try again in a few minutes.')
# wait for job to finish
ID,TIME = out["id"],0
pbar.set_description(out["status"])
while out["status"] in ["UNKNOWN","RUNNING","PENDING"]:
t = 5 + random.randint(0,5)
time.sleep(t)
out = status(ID)
pbar.set_description(out["status"])
if out["status"] == "RUNNING":
TIME += t
pbar.update(n=t)
#if TIME > 900 and out["status"] != "COMPLETE":
# # something failed on the server side, need to resubmit
# N += 1
# break
if out["status"] == "COMPLETE":
if TIME < TIME_ESTIMATE:
pbar.update(n=(TIME_ESTIMATE-TIME))
REDO = False
# Download results
download(ID, tar_gz_file)
# prep list of a3m files
a3m_files = [f"{path}/uniref.a3m"]
if use_env: a3m_files.append(f"{path}/bfd.mgnify30.metaeuk30.smag30.a3m")
# extract a3m files
if not os.path.isfile(a3m_files[0]):
with tarfile.open(tar_gz_file) as tar_gz:
tar_gz.extractall(path)
# templates
if use_templates:
templates = {}
print("seq\tpdb\tcid\tevalue")
for line in open(f"{path}/pdb70.m8","r"):
p = line.rstrip().split()
M,pdb,qid,e_value = p[0],p[1],p[2],p[10]
M = int(M)
if M not in templates: templates[M] = []
templates[M].append(pdb)
if len(templates[M]) <= 20:
print(f"{int(M)-N}\t{pdb}\t{qid}\t{e_value}")
template_paths = {}
for k,TMPL in templates.items():
TMPL_PATH = f"{prefix}_{mode}/templates_{k}"
if not os.path.isdir(TMPL_PATH):
os.mkdir(TMPL_PATH)
TMPL_LINE = ",".join(TMPL[:20])
os.system(f"curl -s https://a3m-templates.mmseqs.com/template/{TMPL_LINE} | tar xzf - -C {TMPL_PATH}/")
os.system(f"cp {TMPL_PATH}/pdb70_a3m.ffindex {TMPL_PATH}/pdb70_cs219.ffindex")
os.system(f"touch {TMPL_PATH}/pdb70_cs219.ffdata")
template_paths[k] = TMPL_PATH
# gather a3m lines
a3m_lines = {}
for a3m_file in a3m_files:
update_M,M = True,None
for line in open(a3m_file,"r"):
if len(line) > 0:
if "\x00" in line:
line = line.replace("\x00","")
update_M = True
if line.startswith(">") and update_M:
M = int(line[1:].rstrip())
update_M = False
if M not in a3m_lines: a3m_lines[M] = []
a3m_lines[M].append(line)
# return results
a3m_lines = ["".join(a3m_lines[n]) for n in Ms]
if use_templates:
template_paths_ = []
for n in Ms:
if n not in template_paths:
template_paths_.append(None)
print(f"{n-N}\tno_templates_found")
else:
template_paths_.append(template_paths[n])
template_paths = template_paths_
if isinstance(x, str):
return (a3m_lines[0], template_paths[0]) if use_templates else a3m_lines[0]
else:
return (a3m_lines, template_paths) if use_templates else a3m_lines
#########################################################################
# utils
#########################################################################
def get_hash(x):
return hashlib.sha1(x.encode()).hexdigest()
def homooligomerize(msas, deletion_matrices, homooligomer=1):
if homooligomer == 1:
return msas, deletion_matrices
else:
new_msas = []
new_mtxs = []
for o in range(homooligomer):
for msa,mtx in zip(msas, deletion_matrices):
num_res = len(msa[0])
L = num_res * o
R = num_res * (homooligomer-(o+1))
new_msas.append(["-"*L+s+"-"*R for s in msa])
new_mtxs.append([[0]*L+m+[0]*R for m in mtx])
return new_msas, new_mtxs
# keeping typo for cross-compatibility
def homooliomerize(msas, deletion_matrices, homooligomer=1):
return homooligomerize(msas, deletion_matrices, homooligomer=homooligomer)
def homooligomerize_heterooligomer(msas, deletion_matrices, lengths, homooligomers):
'''
----- inputs -----
msas: list of msas
deletion_matrices: list of deletion matrices
lengths: list of lengths for each component in complex
homooligomers: list of number of homooligomeric copies for each component
----- outputs -----
(msas, deletion_matrices)
'''
if max(homooligomers) == 1:
return msas, deletion_matrices
elif len(homooligomers) == 1:
return homooligomerize(msas, deletion_matrices, homooligomers[0])
else:
frag_ij = [[0,lengths[0]]]
for length in lengths[1:]:
j = frag_ij[-1][-1]
frag_ij.append([j,j+length])
# for every msa
mod_msas, mod_mtxs = [],[]
for msa, mtx in zip(msas, deletion_matrices):
mod_msa, mod_mtx = [],[]
# for every sequence
for n,(s,m) in enumerate(zip(msa,mtx)):
# split sequence
_s,_m,_ok = [],[],[]
for i,j in frag_ij:
_s.append(s[i:j]); _m.append(m[i:j])
_ok.append(max([o != "-" for o in _s[-1]]))
if n == 0:
# if first query sequence
mod_msa.append("".join([x*h for x,h in zip(_s,homooligomers)]))
mod_mtx.append(sum([x*h for x,h in zip(_m,homooligomers)],[]))
elif sum(_ok) == 1:
# elif one fragment: copy each fragment to every homooligomeric copy
a = _ok.index(True)
for h_a in range(homooligomers[a]):
_blank_seq = [["-"*l]*h for l,h in zip(lengths,homooligomers)]
_blank_mtx = [[[0]*l]*h for l,h in zip(lengths,homooligomers)]
_blank_seq[a][h_a] = _s[a]
_blank_mtx[a][h_a] = _m[a]
mod_msa.append("".join(["".join(x) for x in _blank_seq]))
mod_mtx.append(sum([sum(x,[]) for x in _blank_mtx],[]))
else:
# else: copy fragment pair to every homooligomeric copy pair
for a in range(len(lengths)-1):
if _ok[a]:
for b in range(a+1,len(lengths)):
if _ok[b]:
for h_a in range(homooligomers[a]):
for h_b in range(homooligomers[b]):
_blank_seq = [["-"*l]*h for l,h in zip(lengths,homooligomers)]
_blank_mtx = [[[0]*l]*h for l,h in zip(lengths,homooligomers)]
for c,h_c in zip([a,b],[h_a,h_b]):
_blank_seq[c][h_c] = _s[c]
_blank_mtx[c][h_c] = _m[c]
mod_msa.append("".join(["".join(x) for x in _blank_seq]))
mod_mtx.append(sum([sum(x,[]) for x in _blank_mtx],[]))
mod_msas.append(mod_msa)
mod_mtxs.append(mod_mtx)
return mod_msas, mod_mtxs
def chain_break(idx_res, Ls, length=200):
# Minkyung's code
# add big enough number to residue index to indicate chain breaks
L_prev = 0
for L_i in Ls[:-1]:
idx_res[L_prev+L_i:] += length
L_prev += L_i
return idx_res
##################################################
# plotting
##################################################
def plot_plddt_legend(dpi=100):
thresh = ['plDDT:','Very low (<50)','Low (60)','OK (70)','Confident (80)','Very high (>90)']
plt.figure(figsize=(1,0.1),dpi=dpi)
########################################
for c in ["#FFFFFF","#FF0000","#FFFF00","#00FF00","#00FFFF","#0000FF"]:
plt.bar(0, 0, color=c)
plt.legend(thresh, frameon=False,
loc='center', ncol=6,
handletextpad=1,
columnspacing=1,
markerscale=0.5,)
plt.axis(False)
return plt
def plot_ticks(Ls):
Ln = sum(Ls)
L_prev = 0
for L_i in Ls[:-1]:
L = L_prev + L_i
L_prev += L_i
plt.plot([0,Ln],[L,L],color="black")
plt.plot([L,L],[0,Ln],color="black")
ticks = np.cumsum([0]+Ls)
ticks = (ticks[1:] + ticks[:-1])/2
plt.yticks(ticks,alphabet_list[:len(ticks)])
def plot_confidence(plddt, pae=None, Ls=None, dpi=100):
use_ptm = False if pae is None else True
if use_ptm:
plt.figure(figsize=(10,3), dpi=dpi)
plt.subplot(1,2,1);
else:
plt.figure(figsize=(5,3), dpi=dpi)
plt.title('Predicted lDDT')
plt.plot(plddt)
if Ls is not None:
L_prev = 0
for L_i in Ls[:-1]:
L = L_prev + L_i
L_prev += L_i
plt.plot([L,L],[0,100],color="black")
plt.ylim(0,100)
plt.ylabel('plDDT')
plt.xlabel('position')
if use_ptm:
plt.subplot(1,2,2);plt.title('Predicted Aligned Error')
Ln = pae.shape[0]
plt.imshow(pae,cmap="bwr",vmin=0,vmax=30,extent=(0, Ln, Ln, 0))
if Ls is not None and len(Ls) > 1: plot_ticks(Ls)
plt.colorbar()
plt.xlabel('Scored residue')
plt.ylabel('Aligned residue')
return plt
def plot_msas(msas, ori_seq=None, sort_by_seqid=True, deduplicate=True, dpi=100, return_plt=True):
'''
plot the msas
'''
if ori_seq is None: ori_seq = msas[0][0]
seqs = ori_seq.replace("/","").split(":")
seqs_dash = ori_seq.replace(":","").split("/")
Ln = np.cumsum(np.append(0,[len(seq) for seq in seqs]))
Ln_dash = np.cumsum(np.append(0,[len(seq) for seq in seqs_dash]))
Nn,lines = [],[]
for msa in msas:
msa_ = set(msa) if deduplicate else msa
if len(msa_) > 0:
Nn.append(len(msa_))
msa_ = np.asarray([list(seq) for seq in msa_])
gap_ = msa_ != "-"
qid_ = msa_ == np.array(list("".join(seqs)))
gapid = np.stack([gap_[:,Ln[i]:Ln[i+1]].max(-1) for i in range(len(seqs))],-1)
seqid = np.stack([qid_[:,Ln[i]:Ln[i+1]].mean(-1) for i in range(len(seqs))],-1).sum(-1) / (gapid.sum(-1) + 1e-8)
non_gaps = gap_.astype(np.float)
non_gaps[non_gaps == 0] = np.nan
if sort_by_seqid:
lines.append(non_gaps[seqid.argsort()]*seqid[seqid.argsort(),None])
else:
lines.append(non_gaps[::-1] * seqid[::-1,None])
Nn = np.cumsum(np.append(0,Nn))
lines = np.concatenate(lines,0)
if return_plt:
plt.figure(figsize=(8,5),dpi=dpi)
plt.title("Sequence coverage")
plt.imshow(lines,
interpolation='nearest', aspect='auto',
cmap="rainbow_r", vmin=0, vmax=1, origin='lower',
extent=(0, lines.shape[1], 0, lines.shape[0]))
for i in Ln[1:-1]:
plt.plot([i,i],[0,lines.shape[0]],color="black")
for i in Ln_dash[1:-1]:
plt.plot([i,i],[0,lines.shape[0]],"--",color="black")
for j in Nn[1:-1]:
plt.plot([0,lines.shape[1]],[j,j],color="black")
plt.plot((np.isnan(lines) == False).sum(0), color='black')
plt.xlim(0,lines.shape[1])
plt.ylim(0,lines.shape[0])
plt.colorbar(label="Sequence identity to query")
plt.xlabel("Positions")
plt.ylabel("Sequences")
if return_plt: return plt
def read_pdb_renum(pdb_filename, Ls=None):
if Ls is not None:
L_init = 0
new_chain = {}
for L,c in zip(Ls, alphabet_list):
new_chain.update({i:c for i in range(L_init,L_init+L)})
L_init += L
n,pdb_out = 1,[]
resnum_,chain_ = 1,"A"
for line in open(pdb_filename,"r"):
if line[:4] == "ATOM":
chain = line[21:22]
resnum = int(line[22:22+5])
if resnum != resnum_ or chain != chain_:
resnum_,chain_ = resnum,chain
n += 1
if Ls is None: pdb_out.append("%s%4i%s" % (line[:22],n,line[26:]))
else: pdb_out.append("%s%s%4i%s" % (line[:21],new_chain[n-1],n,line[26:]))
return "".join(pdb_out)
def show_pdb(pred_output_path, show_sidechains=False, show_mainchains=False,
color="lDDT", chains=None, Ls=None, vmin=50, vmax=90,
color_HP=False, size=(800,480)):
if chains is None:
chains = 1 if Ls is None else len(Ls)
view = py3Dmol.view(js='https://3dmol.org/build/3Dmol.js', width=size[0], height=size[1])
view.addModel(read_pdb_renum(pred_output_path, Ls),'pdb')
if color == "lDDT":
view.setStyle({'cartoon': {'colorscheme': {'prop':'b','gradient': 'roygb','min':vmin,'max':vmax}}})
elif color == "rainbow":
view.setStyle({'cartoon': {'color':'spectrum'}})
elif color == "chain":
for n,chain,color in zip(range(chains),alphabet_list,pymol_color_list):
view.setStyle({'chain':chain},{'cartoon': {'color':color}})
if show_sidechains:
BB = ['C','O','N']
HP = ["ALA","GLY","VAL","ILE","LEU","PHE","MET","PRO","TRP","CYS","TYR"]
if color_HP:
view.addStyle({'and':[{'resn':HP},{'atom':BB,'invert':True}]},
{'stick':{'colorscheme':"yellowCarbon",'radius':0.3}})
view.addStyle({'and':[{'resn':HP,'invert':True},{'atom':BB,'invert':True}]},
{'stick':{'colorscheme':"whiteCarbon",'radius':0.3}})
view.addStyle({'and':[{'resn':"GLY"},{'atom':'CA'}]},
{'sphere':{'colorscheme':"yellowCarbon",'radius':0.3}})
view.addStyle({'and':[{'resn':"PRO"},{'atom':['C','O'],'invert':True}]},
{'stick':{'colorscheme':"yellowCarbon",'radius':0.3}})
else:
view.addStyle({'and':[{'resn':["GLY","PRO"],'invert':True},{'atom':BB,'invert':True}]},
{'stick':{'colorscheme':f"WhiteCarbon",'radius':0.3}})
view.addStyle({'and':[{'resn':"GLY"},{'atom':'CA'}]},
{'sphere':{'colorscheme':f"WhiteCarbon",'radius':0.3}})
view.addStyle({'and':[{'resn':"PRO"},{'atom':['C','O'],'invert':True}]},
{'stick':{'colorscheme':f"WhiteCarbon",'radius':0.3}})
if show_mainchains:
BB = ['C','O','N','CA']
view.addStyle({'atom':BB},{'stick':{'colorscheme':f"WhiteCarbon",'radius':0.3}})
view.zoomTo()
return view
def plot_plddts(plddts, Ls=None, dpi=100, fig=True):
if fig: plt.figure(figsize=(8,5),dpi=100)
plt.title("Predicted lDDT per position")
for n,plddt in enumerate(plddts):
plt.plot(plddt,label=f"rank_{n+1}")
if Ls is not None:
L_prev = 0
for L_i in Ls[:-1]:
L = L_prev + L_i
L_prev += L_i
plt.plot([L,L],[0,100],color="black")
plt.legend()
plt.ylim(0,100)
plt.ylabel("Predicted lDDT")
plt.xlabel("Positions")
return plt
def plot_paes(paes, Ls=None, dpi=100, fig=True):
num_models = len(paes)
if fig: plt.figure(figsize=(3*num_models,2), dpi=dpi)
for n,pae in enumerate(paes):
plt.subplot(1,num_models,n+1)
plt.title(f"rank_{n+1}")
Ln = pae.shape[0]
plt.imshow(pae,cmap="bwr",vmin=0,vmax=30,extent=(0, Ln, Ln, 0))
if Ls is not None and len(Ls) > 1: plot_ticks(Ls)
plt.colorbar()
return plt
def plot_adjs(adjs, Ls=None, dpi=100, fig=True):
num_models = len(adjs)
if fig: plt.figure(figsize=(3*num_models,2), dpi=dpi)
for n,adj in enumerate(adjs):
plt.subplot(1,num_models,n+1)
plt.title(f"rank_{n+1}")
Ln = adj.shape[0]
plt.imshow(adj,cmap="binary",vmin=0,vmax=1,extent=(0, Ln, Ln, 0))
if Ls is not None and len(Ls) > 1: plot_ticks(Ls)
plt.colorbar()
return plt
def plot_dists(dists, Ls=None, dpi=100, fig=True):
num_models = len(dists)
if fig: plt.figure(figsize=(3*num_models,2), dpi=dpi)
for n,dist in enumerate(dists):
plt.subplot(1,num_models,n+1)
plt.title(f"rank_{n+1}")
Ln = dist.shape[0]
plt.imshow(dist,extent=(0, Ln, Ln, 0))
if Ls is not None and len(Ls) > 1: plot_ticks(Ls)
plt.colorbar()
return plt
##########################################################################
##########################################################################
def kabsch(a, b, weights=None, return_v=False):
a = np.asarray(a)
b = np.asarray(b)
if weights is None: weights = np.ones(len(b))
else: weights = np.asarray(weights)
B = np.einsum('ji,jk->ik', weights[:, None] * a, b)
u, s, vh = np.linalg.svd(B)
if np.linalg.det(u @ vh) < 0: u[:, -1] = -u[:, -1]
if return_v: return u
else: return u @ vh
def plot_pseudo_3D(xyz, c=None, ax=None, chainbreak=5,
cmap="gist_rainbow", line_w=2.0,
cmin=None, cmax=None, zmin=None, zmax=None):
def rescale(a,amin=None,amax=None):
a = np.copy(a)
if amin is None: amin = a.min()
if amax is None: amax = a.max()
a[a < amin] = amin
a[a > amax] = amax
return (a - amin)/(amax - amin)
# make segments
xyz = np.asarray(xyz)
seg = np.concatenate([xyz[:-1,None,:],xyz[1:,None,:]],axis=-2)
seg_xy = seg[...,:2]
seg_z = seg[...,2].mean(-1)
ord = seg_z.argsort()
# set colors
if c is None: c = np.arange(len(seg))[::-1]
else: c = (c[1:] + c[:-1])/2
c = rescale(c,cmin,cmax)
if isinstance(cmap, str):
if cmap == "gist_rainbow": c *= 0.75
colors = matplotlib.cm.get_cmap(cmap)(c)
else:
colors = cmap(c)
if chainbreak is not None:
dist = np.linalg.norm(xyz[:-1] - xyz[1:], axis=-1)
colors[...,3] = (dist < chainbreak).astype(np.float)
# add shade/tint based on z-dimension
z = rescale(seg_z,zmin,zmax)[:,None]
tint, shade = z/3, (z+2)/3
colors[:,:3] = colors[:,:3] + (1 - colors[:,:3]) * tint
colors[:,:3] = colors[:,:3] * shade
set_lim = False
if ax is None:
fig, ax = plt.subplots()
fig.set_figwidth(5)
fig.set_figheight(5)
set_lim = True
else:
fig = ax.get_figure()
if ax.get_xlim() == (0,1):
set_lim = True
if set_lim:
xy_min = xyz[:,:2].min() - line_w
xy_max = xyz[:,:2].max() + line_w
ax.set_xlim(xy_min,xy_max)
ax.set_ylim(xy_min,xy_max)
ax.set_aspect('equal')
# determine linewidths
width = fig.bbox_inches.width * ax.get_position().width
linewidths = line_w * 72 * width / np.diff(ax.get_xlim())
lines = mcoll.LineCollection(seg_xy[ord], colors=colors[ord], linewidths=linewidths,
path_effects=[matplotlib.patheffects.Stroke(capstyle="round")])
return ax.add_collection(lines)
def add_text(text, ax):
return plt.text(0.5, 1.01, text, horizontalalignment='center',
verticalalignment='bottom', transform=ax.transAxes)
def plot_protein(protein=None, pos=None, plddt=None, Ls=None, dpi=100, best_view=True, line_w=2.0):
if protein is not None:
pos = np.asarray(protein.atom_positions[:,1,:])
plddt = np.asarray(protein.b_factors[:,0])
# get best view
if best_view:
if plddt is not None:
weights = plddt/100
pos = pos - (pos * weights[:,None]).sum(0,keepdims=True) / weights.sum()
pos = pos @ kabsch(pos, pos, weights, return_v=True)
else:
pos = pos - pos.mean(0,keepdims=True)
pos = pos @ kabsch(pos, pos, return_v=True)
if plddt is not None:
fig, (ax1, ax2) = plt.subplots(1,2)
fig.set_figwidth(6); fig.set_figheight(3)
ax = [ax1, ax2]
else:
fig, ax1 = plt.subplots(1,1)
fig.set_figwidth(3); fig.set_figheight(3)
ax = [ax1]
fig.set_dpi(dpi)
fig.subplots_adjust(top = 0.9, bottom = 0.1, right = 1, left = 0, hspace = 0, wspace = 0)
xy_min = pos[...,:2].min() - line_w
xy_max = pos[...,:2].max() + line_w
for a in ax:
a.set_xlim(xy_min, xy_max)
a.set_ylim(xy_min, xy_max)
a.axis(False)
if Ls is None or len(Ls) == 1:
# color N->C
c = np.arange(len(pos))[::-1]
plot_pseudo_3D(pos, line_w=line_w, ax=ax1)
add_text("colored by N→C", ax1)
else:
# color by chain
c = np.concatenate([[n]*L for n,L in enumerate(Ls)])
if len(Ls) > 40: plot_pseudo_3D(pos, c=c, line_w=line_w, ax=ax1)
else: plot_pseudo_3D(pos, c=c, cmap=pymol_cmap, cmin=0, cmax=39, line_w=line_w, ax=ax1)
add_text("colored by chain", ax1)
if plddt is not None:
# color by pLDDT
plot_pseudo_3D(pos, c=plddt, cmin=50, cmax=90, line_w=line_w, ax=ax2)
add_text("colored by pLDDT", ax2)
return fig
|