Spaces:
Running
on
T4
Running
on
T4
File size: 8,488 Bytes
85bd48b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 |
# Copyright 2021 DeepMind Technologies Limited
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Functions for building the input features for the AlphaFold model."""
import os
from typing import Mapping, Optional, Sequence
from absl import logging
from alphafold.common import residue_constants
from alphafold.data import parsers
from alphafold.data import templates
from alphafold.data.tools import hhblits
from alphafold.data.tools import hhsearch
from alphafold.data.tools import jackhmmer
import numpy as np
# Internal import (7716).
FeatureDict = Mapping[str, np.ndarray]
def make_sequence_features(
sequence: str, description: str, num_res: int) -> FeatureDict:
"""Constructs a feature dict of sequence features."""
features = {}
features['aatype'] = residue_constants.sequence_to_onehot(
sequence=sequence,
mapping=residue_constants.restype_order_with_x,
map_unknown_to_x=True)
features['between_segment_residues'] = np.zeros((num_res,), dtype=np.int32)
features['domain_name'] = np.array([description.encode('utf-8')],
dtype=np.object_)
features['residue_index'] = np.array(range(num_res), dtype=np.int32)
features['seq_length'] = np.array([num_res] * num_res, dtype=np.int32)
features['sequence'] = np.array([sequence.encode('utf-8')], dtype=np.object_)
return features
def make_msa_features(
msas: Sequence[Sequence[str]],
deletion_matrices: Sequence[parsers.DeletionMatrix]) -> FeatureDict:
"""Constructs a feature dict of MSA features."""
if not msas:
raise ValueError('At least one MSA must be provided.')
int_msa = []
deletion_matrix = []
seen_sequences = set()
for msa_index, msa in enumerate(msas):
if not msa:
raise ValueError(f'MSA {msa_index} must contain at least one sequence.')
for sequence_index, sequence in enumerate(msa):
if sequence in seen_sequences:
continue
seen_sequences.add(sequence)
int_msa.append(
[residue_constants.HHBLITS_AA_TO_ID[res] for res in sequence])
deletion_matrix.append(deletion_matrices[msa_index][sequence_index])
num_res = len(msas[0][0])
num_alignments = len(int_msa)
features = {}
features['deletion_matrix_int'] = np.array(deletion_matrix, dtype=np.int32)
features['msa'] = np.array(int_msa, dtype=np.int32)
features['num_alignments'] = np.array(
[num_alignments] * num_res, dtype=np.int32)
return features
class DataPipeline:
"""Runs the alignment tools and assembles the input features."""
def __init__(self,
jackhmmer_binary_path: str,
hhblits_binary_path: str,
hhsearch_binary_path: str,
uniref90_database_path: str,
mgnify_database_path: str,
bfd_database_path: Optional[str],
uniclust30_database_path: Optional[str],
small_bfd_database_path: Optional[str],
pdb70_database_path: str,
template_featurizer: templates.TemplateHitFeaturizer,
use_small_bfd: bool,
mgnify_max_hits: int = 501,
uniref_max_hits: int = 10000):
"""Constructs a feature dict for a given FASTA file."""
self._use_small_bfd = use_small_bfd
self.jackhmmer_uniref90_runner = jackhmmer.Jackhmmer(
binary_path=jackhmmer_binary_path,
database_path=uniref90_database_path)
if use_small_bfd:
self.jackhmmer_small_bfd_runner = jackhmmer.Jackhmmer(
binary_path=jackhmmer_binary_path,
database_path=small_bfd_database_path)
else:
self.hhblits_bfd_uniclust_runner = hhblits.HHBlits(
binary_path=hhblits_binary_path,
databases=[bfd_database_path, uniclust30_database_path])
self.jackhmmer_mgnify_runner = jackhmmer.Jackhmmer(
binary_path=jackhmmer_binary_path,
database_path=mgnify_database_path)
self.hhsearch_pdb70_runner = hhsearch.HHSearch(
binary_path=hhsearch_binary_path,
databases=[pdb70_database_path])
self.template_featurizer = template_featurizer
self.mgnify_max_hits = mgnify_max_hits
self.uniref_max_hits = uniref_max_hits
def process(self, input_fasta_path: str, msa_output_dir: str) -> FeatureDict:
"""Runs alignment tools on the input sequence and creates features."""
with open(input_fasta_path) as f:
input_fasta_str = f.read()
input_seqs, input_descs = parsers.parse_fasta(input_fasta_str)
if len(input_seqs) != 1:
raise ValueError(
f'More than one input sequence found in {input_fasta_path}.')
input_sequence = input_seqs[0]
input_description = input_descs[0]
num_res = len(input_sequence)
jackhmmer_uniref90_result = self.jackhmmer_uniref90_runner.query(
input_fasta_path)[0]
jackhmmer_mgnify_result = self.jackhmmer_mgnify_runner.query(
input_fasta_path)[0]
uniref90_msa_as_a3m = parsers.convert_stockholm_to_a3m(
jackhmmer_uniref90_result['sto'], max_sequences=self.uniref_max_hits)
hhsearch_result = self.hhsearch_pdb70_runner.query(uniref90_msa_as_a3m)
uniref90_out_path = os.path.join(msa_output_dir, 'uniref90_hits.sto')
with open(uniref90_out_path, 'w') as f:
f.write(jackhmmer_uniref90_result['sto'])
mgnify_out_path = os.path.join(msa_output_dir, 'mgnify_hits.sto')
with open(mgnify_out_path, 'w') as f:
f.write(jackhmmer_mgnify_result['sto'])
pdb70_out_path = os.path.join(msa_output_dir, 'pdb70_hits.hhr')
with open(pdb70_out_path, 'w') as f:
f.write(hhsearch_result)
uniref90_msa, uniref90_deletion_matrix, _ = parsers.parse_stockholm(
jackhmmer_uniref90_result['sto'])
mgnify_msa, mgnify_deletion_matrix, _ = parsers.parse_stockholm(
jackhmmer_mgnify_result['sto'])
hhsearch_hits = parsers.parse_hhr(hhsearch_result)
mgnify_msa = mgnify_msa[:self.mgnify_max_hits]
mgnify_deletion_matrix = mgnify_deletion_matrix[:self.mgnify_max_hits]
if self._use_small_bfd:
jackhmmer_small_bfd_result = self.jackhmmer_small_bfd_runner.query(
input_fasta_path)[0]
bfd_out_path = os.path.join(msa_output_dir, 'small_bfd_hits.a3m')
with open(bfd_out_path, 'w') as f:
f.write(jackhmmer_small_bfd_result['sto'])
bfd_msa, bfd_deletion_matrix, _ = parsers.parse_stockholm(
jackhmmer_small_bfd_result['sto'])
else:
hhblits_bfd_uniclust_result = self.hhblits_bfd_uniclust_runner.query(
input_fasta_path)
bfd_out_path = os.path.join(msa_output_dir, 'bfd_uniclust_hits.a3m')
with open(bfd_out_path, 'w') as f:
f.write(hhblits_bfd_uniclust_result['a3m'])
bfd_msa, bfd_deletion_matrix = parsers.parse_a3m(
hhblits_bfd_uniclust_result['a3m'])
templates_result = self.template_featurizer.get_templates(
query_sequence=input_sequence,
query_pdb_code=None,
query_release_date=None,
hits=hhsearch_hits)
sequence_features = make_sequence_features(
sequence=input_sequence,
description=input_description,
num_res=num_res)
msa_features = make_msa_features(
msas=(uniref90_msa, bfd_msa, mgnify_msa),
deletion_matrices=(uniref90_deletion_matrix,
bfd_deletion_matrix,
mgnify_deletion_matrix))
logging.info('Uniref90 MSA size: %d sequences.', len(uniref90_msa))
logging.info('BFD MSA size: %d sequences.', len(bfd_msa))
logging.info('MGnify MSA size: %d sequences.', len(mgnify_msa))
logging.info('Final (deduplicated) MSA size: %d sequences.',
msa_features['num_alignments'][0])
logging.info('Total number of templates (NB: this can include bad '
'templates and is later filtered to top 4): %d.',
templates_result.features['template_domain_names'].shape[0])
return {**sequence_features, **msa_features, **templates_result.features}
|