File size: 8,488 Bytes
85bd48b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
# Copyright 2021 DeepMind Technologies Limited
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#      http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

"""Functions for building the input features for the AlphaFold model."""

import os
from typing import Mapping, Optional, Sequence
from absl import logging
from alphafold.common import residue_constants
from alphafold.data import parsers
from alphafold.data import templates
from alphafold.data.tools import hhblits
from alphafold.data.tools import hhsearch
from alphafold.data.tools import jackhmmer
import numpy as np

# Internal import (7716).

FeatureDict = Mapping[str, np.ndarray]


def make_sequence_features(
    sequence: str, description: str, num_res: int) -> FeatureDict:
  """Constructs a feature dict of sequence features."""
  features = {}
  features['aatype'] = residue_constants.sequence_to_onehot(
      sequence=sequence,
      mapping=residue_constants.restype_order_with_x,
      map_unknown_to_x=True)
  features['between_segment_residues'] = np.zeros((num_res,), dtype=np.int32)
  features['domain_name'] = np.array([description.encode('utf-8')],
                                     dtype=np.object_)
  features['residue_index'] = np.array(range(num_res), dtype=np.int32)
  features['seq_length'] = np.array([num_res] * num_res, dtype=np.int32)
  features['sequence'] = np.array([sequence.encode('utf-8')], dtype=np.object_)
  return features


def make_msa_features(
    msas: Sequence[Sequence[str]],
    deletion_matrices: Sequence[parsers.DeletionMatrix]) -> FeatureDict:
  """Constructs a feature dict of MSA features."""
  if not msas:
    raise ValueError('At least one MSA must be provided.')

  int_msa = []
  deletion_matrix = []
  seen_sequences = set()
  for msa_index, msa in enumerate(msas):
    if not msa:
      raise ValueError(f'MSA {msa_index} must contain at least one sequence.')
    for sequence_index, sequence in enumerate(msa):
      if sequence in seen_sequences:
        continue
      seen_sequences.add(sequence)
      int_msa.append(
          [residue_constants.HHBLITS_AA_TO_ID[res] for res in sequence])
      deletion_matrix.append(deletion_matrices[msa_index][sequence_index])

  num_res = len(msas[0][0])
  num_alignments = len(int_msa)
  features = {}
  features['deletion_matrix_int'] = np.array(deletion_matrix, dtype=np.int32)
  features['msa'] = np.array(int_msa, dtype=np.int32)
  features['num_alignments'] = np.array(
      [num_alignments] * num_res, dtype=np.int32)
  return features


class DataPipeline:
  """Runs the alignment tools and assembles the input features."""

  def __init__(self,
               jackhmmer_binary_path: str,
               hhblits_binary_path: str,
               hhsearch_binary_path: str,
               uniref90_database_path: str,
               mgnify_database_path: str,
               bfd_database_path: Optional[str],
               uniclust30_database_path: Optional[str],
               small_bfd_database_path: Optional[str],
               pdb70_database_path: str,
               template_featurizer: templates.TemplateHitFeaturizer,
               use_small_bfd: bool,
               mgnify_max_hits: int = 501,
               uniref_max_hits: int = 10000):
    """Constructs a feature dict for a given FASTA file."""
    self._use_small_bfd = use_small_bfd
    self.jackhmmer_uniref90_runner = jackhmmer.Jackhmmer(
        binary_path=jackhmmer_binary_path,
        database_path=uniref90_database_path)
    if use_small_bfd:
      self.jackhmmer_small_bfd_runner = jackhmmer.Jackhmmer(
          binary_path=jackhmmer_binary_path,
          database_path=small_bfd_database_path)
    else:
      self.hhblits_bfd_uniclust_runner = hhblits.HHBlits(
          binary_path=hhblits_binary_path,
          databases=[bfd_database_path, uniclust30_database_path])
    self.jackhmmer_mgnify_runner = jackhmmer.Jackhmmer(
        binary_path=jackhmmer_binary_path,
        database_path=mgnify_database_path)
    self.hhsearch_pdb70_runner = hhsearch.HHSearch(
        binary_path=hhsearch_binary_path,
        databases=[pdb70_database_path])
    self.template_featurizer = template_featurizer
    self.mgnify_max_hits = mgnify_max_hits
    self.uniref_max_hits = uniref_max_hits

  def process(self, input_fasta_path: str, msa_output_dir: str) -> FeatureDict:
    """Runs alignment tools on the input sequence and creates features."""
    with open(input_fasta_path) as f:
      input_fasta_str = f.read()
    input_seqs, input_descs = parsers.parse_fasta(input_fasta_str)
    if len(input_seqs) != 1:
      raise ValueError(
          f'More than one input sequence found in {input_fasta_path}.')
    input_sequence = input_seqs[0]
    input_description = input_descs[0]
    num_res = len(input_sequence)

    jackhmmer_uniref90_result = self.jackhmmer_uniref90_runner.query(
        input_fasta_path)[0]
    jackhmmer_mgnify_result = self.jackhmmer_mgnify_runner.query(
        input_fasta_path)[0]

    uniref90_msa_as_a3m = parsers.convert_stockholm_to_a3m(
        jackhmmer_uniref90_result['sto'], max_sequences=self.uniref_max_hits)
    hhsearch_result = self.hhsearch_pdb70_runner.query(uniref90_msa_as_a3m)

    uniref90_out_path = os.path.join(msa_output_dir, 'uniref90_hits.sto')
    with open(uniref90_out_path, 'w') as f:
      f.write(jackhmmer_uniref90_result['sto'])

    mgnify_out_path = os.path.join(msa_output_dir, 'mgnify_hits.sto')
    with open(mgnify_out_path, 'w') as f:
      f.write(jackhmmer_mgnify_result['sto'])

    pdb70_out_path = os.path.join(msa_output_dir, 'pdb70_hits.hhr')
    with open(pdb70_out_path, 'w') as f:
      f.write(hhsearch_result)

    uniref90_msa, uniref90_deletion_matrix, _ = parsers.parse_stockholm(
        jackhmmer_uniref90_result['sto'])
    mgnify_msa, mgnify_deletion_matrix, _ = parsers.parse_stockholm(
        jackhmmer_mgnify_result['sto'])
    hhsearch_hits = parsers.parse_hhr(hhsearch_result)
    mgnify_msa = mgnify_msa[:self.mgnify_max_hits]
    mgnify_deletion_matrix = mgnify_deletion_matrix[:self.mgnify_max_hits]

    if self._use_small_bfd:
      jackhmmer_small_bfd_result = self.jackhmmer_small_bfd_runner.query(
          input_fasta_path)[0]

      bfd_out_path = os.path.join(msa_output_dir, 'small_bfd_hits.a3m')
      with open(bfd_out_path, 'w') as f:
        f.write(jackhmmer_small_bfd_result['sto'])

      bfd_msa, bfd_deletion_matrix, _ = parsers.parse_stockholm(
          jackhmmer_small_bfd_result['sto'])
    else:
      hhblits_bfd_uniclust_result = self.hhblits_bfd_uniclust_runner.query(
          input_fasta_path)

      bfd_out_path = os.path.join(msa_output_dir, 'bfd_uniclust_hits.a3m')
      with open(bfd_out_path, 'w') as f:
        f.write(hhblits_bfd_uniclust_result['a3m'])

      bfd_msa, bfd_deletion_matrix = parsers.parse_a3m(
          hhblits_bfd_uniclust_result['a3m'])

    templates_result = self.template_featurizer.get_templates(
        query_sequence=input_sequence,
        query_pdb_code=None,
        query_release_date=None,
        hits=hhsearch_hits)

    sequence_features = make_sequence_features(
        sequence=input_sequence,
        description=input_description,
        num_res=num_res)

    msa_features = make_msa_features(
        msas=(uniref90_msa, bfd_msa, mgnify_msa),
        deletion_matrices=(uniref90_deletion_matrix,
                           bfd_deletion_matrix,
                           mgnify_deletion_matrix))

    logging.info('Uniref90 MSA size: %d sequences.', len(uniref90_msa))
    logging.info('BFD MSA size: %d sequences.', len(bfd_msa))
    logging.info('MGnify MSA size: %d sequences.', len(mgnify_msa))
    logging.info('Final (deduplicated) MSA size: %d sequences.',
                 msa_features['num_alignments'][0])
    logging.info('Total number of templates (NB: this can include bad '
                 'templates and is later filtered to top 4): %d.',
                 templates_result.features['template_domain_names'].shape[0])

    return {**sequence_features, **msa_features, **templates_result.features}