File size: 21,853 Bytes
85bd48b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
import jax
import jax.numpy as jnp
import tensorflow as tf
tf.config.set_visible_devices([], 'GPU')

import numpy as np
from alphafold.common import protein
from alphafold.common import residue_constants
from alphafold.model import model
from alphafold.model import folding
from alphafold.model import all_atom
from alphafold.model.tf import shape_placeholders

#######################
# reshape inputs
#######################
def make_fixed_size(feat, model_runner, length, batch_axis=True):
  '''pad input features'''
  cfg = model_runner.config
  if batch_axis:
    shape_schema = {k:[None]+v for k,v in dict(cfg.data.eval.feat).items()}
  else:
    shape_schema = {k:v for k,v in dict(cfg.data.eval.feat).items()}

  pad_size_map = {
      shape_placeholders.NUM_RES: length,
      shape_placeholders.NUM_MSA_SEQ: cfg.data.eval.max_msa_clusters,
      shape_placeholders.NUM_EXTRA_SEQ: cfg.data.common.max_extra_msa,
      shape_placeholders.NUM_TEMPLATES: cfg.data.eval.max_templates
  }
  for k, v in feat.items():
    # Don't transfer this to the accelerator.
    if k == 'extra_cluster_assignment':
      continue
    shape = list(v.shape)
    schema = shape_schema[k]
    assert len(shape) == len(schema), (
        f'Rank mismatch between shape and shape schema for {k}: '
        f'{shape} vs {schema}')
    pad_size = [pad_size_map.get(s2, None) or s1 for (s1, s2) in zip(shape, schema)]
    padding = [(0, p - tf.shape(v)[i]) for i, p in enumerate(pad_size)]
    if padding:
      feat[k] = tf.pad(v, padding, name=f'pad_to_fixed_{k}')
      feat[k].set_shape(pad_size)
  return {k:np.asarray(v) for k,v in feat.items()}

#########################
# rmsd
#########################
def jnp_rmsdist(true, pred):
  return _np_rmsdist(true, pred)

def jnp_rmsd(true, pred, add_dist=False):
  rmsd = _np_rmsd(true, pred)
  if add_dist: rmsd = (rmsd + _np_rmsdist(true, pred))/2
  return rmsd

def jnp_kabsch_w(a, b, weights):
  return _np_kabsch(a * weights[:,None], b)

def jnp_rmsd_w(true, pred, weights):
  p = true - (true * weights[:,None]).sum(0,keepdims=True)/weights.sum()
  q = pred - (pred * weights[:,None]).sum(0,keepdims=True)/weights.sum()
  p = p @ _np_kabsch(p * weights[:,None], q)
  return jnp.sqrt((weights*jnp.square(p-q).sum(-1)).sum()/weights.sum() + 1e-8)

def get_rmsd_loss_w(batch, outputs, copies=1):
  weights = batch["all_atom_mask"][:,1]
  true = batch["all_atom_positions"][:,1,:]
  pred = outputs["structure_module"]["final_atom_positions"][:,1,:]
  if copies == 1:
    return jnp_rmsd_w(true, pred, weights)
  else:
    # TODO add support for weights
    I = copies - 1
    L = true.shape[0] // copies
    p = true - true[:L].mean(0)
    q = pred - pred[:L].mean(0)
    p = p @ _np_kabsch(p[:L], q[:L])
    rm = jnp.square(p[:L]-q[:L]).sum(-1).mean()
    p,q = p[L:].reshape(I,1,L,-1),q[L:].reshape(1,I,L,-1)
    rm += jnp.square(p-q).sum(-1).mean(-1).min(-1).sum()
    return jnp.sqrt(rm / copies)

####################
# confidence metrics
####################
def get_plddt(outputs):
  logits = outputs["predicted_lddt"]["logits"]
  num_bins = logits.shape[-1]
  bin_width = 1.0 / num_bins
  bin_centers = jnp.arange(start=0.5 * bin_width, stop=1.0, step=bin_width)
  probs = jax.nn.softmax(logits, axis=-1)
  return jnp.sum(probs * bin_centers[None, :], axis=-1)

def get_pae(outputs):
  prob = jax.nn.softmax(outputs["predicted_aligned_error"]["logits"],-1)
  breaks = outputs["predicted_aligned_error"]["breaks"]
  step = breaks[1]-breaks[0]
  bin_centers = breaks + step/2
  bin_centers = jnp.append(bin_centers,bin_centers[-1]+step)
  return (prob*bin_centers).sum(-1)

####################
# loss functions
####################
def get_rmsd_loss(batch, outputs):
  true = batch["all_atom_positions"][:,1,:]
  pred = outputs["structure_module"]["final_atom_positions"][:,1,:]
  return _np_rmsd(true,pred)

def _distogram_log_loss(logits, bin_edges, batch, num_bins, copies=1):
  """Log loss of a distogram."""
  pos,mask = batch['pseudo_beta'],batch['pseudo_beta_mask']
  sq_breaks = jnp.square(bin_edges)
  dist2 = jnp.square(pos[:,None] - pos[None,:]).sum(-1,keepdims=True)
  true_bins = jnp.sum(dist2 > sq_breaks, axis=-1)
  true = jax.nn.one_hot(true_bins, num_bins)

  if copies == 1:
    errors = -(true * jax.nn.log_softmax(logits)).sum(-1)
    sq_mask = mask[:,None] * mask[None,:]
    avg_error = (errors * sq_mask).sum()/(1e-6 + sq_mask.sum())
    return avg_error
  else:
    # TODO add support for masks
    L = pos.shape[0] // copies
    I = copies - 1
    true_, pred_ = true[:L,:L], logits[:L,:L]
    errors = -(true_ * jax.nn.log_softmax(pred_)).sum(-1)
    avg_error = errors.mean()

    true_, pred_ = true[:L,L:], logits[:L,L:]
    true_, pred_ = true_.reshape(L,I,1,L,-1), pred_.reshape(L,1,I,L,-1)
    errors = -(true_ * jax.nn.log_softmax(pred_)).sum(-1)
    avg_error += errors.mean((0,-1)).min(-1).sum()

    return avg_error / copies

def get_dgram_loss(batch, outputs, model_config, logits=None, copies=1):
  # get cb features (ca in case of glycine)
  pb, pb_mask = model.modules.pseudo_beta_fn(batch["aatype"],
                                             batch["all_atom_positions"],
                                             batch["all_atom_mask"])
  if logits is None: logits = outputs["distogram"]["logits"]
  dgram_loss = _distogram_log_loss(logits,
                                   outputs["distogram"]["bin_edges"],
                                   batch={"pseudo_beta":pb,"pseudo_beta_mask":pb_mask},
                                   num_bins=model_config.model.heads.distogram.num_bins,
                                   copies=copies)
  return dgram_loss

def get_fape_loss(batch, outputs, model_config, use_clamped_fape=False):
  sub_batch = jax.tree_map(lambda x: x, batch)
  sub_batch["use_clamped_fape"] = use_clamped_fape
  loss = {"loss":0.0}    
  folding.backbone_loss(loss, sub_batch, outputs["structure_module"], model_config.model.heads.structure_module)
  return loss["loss"]

####################
# loss functions (restricted to idx and/or sidechains)
####################
def get_dgram_loss_idx(batch, outputs, idx, model_config):
  idx_ref = batch["idx"]
  pb, pb_mask = model.modules.pseudo_beta_fn(batch["aatype"][idx_ref],
                                             batch["all_atom_positions"][idx_ref],
                                             batch["all_atom_mask"][idx_ref])
  
  dgram_loss = model.modules._distogram_log_loss(outputs["distogram"]["logits"][:,idx][idx,:],
                                                 outputs["distogram"]["bin_edges"],
                                                 batch={"pseudo_beta":pb,"pseudo_beta_mask":pb_mask},
                                                 num_bins=model_config.model.heads.distogram.num_bins)
  return dgram_loss["loss"]

def get_fape_loss_idx(batch, outputs, idx, model_config, backbone=False, sidechain=True, use_clamped_fape=False):
  idx_ref = batch["idx"]
  
  sub_batch = batch.copy()
  sub_batch.pop("idx")
  sub_batch = jax.tree_map(lambda x: x[idx_ref,...],sub_batch)
  sub_batch["use_clamped_fape"] = use_clamped_fape
  
  value = jax.tree_map(lambda x: x, outputs["structure_module"])
  loss = {"loss":0.0}
  
  if sidechain:
    value.update(folding.compute_renamed_ground_truth(sub_batch, value['final_atom14_positions'][idx,...]))
    value['sidechains']['frames'] = jax.tree_map(lambda x: x[:,idx,:], value["sidechains"]["frames"])
    value['sidechains']['atom_pos'] = jax.tree_map(lambda x: x[:,idx,:], value["sidechains"]["atom_pos"])
    loss.update(folding.sidechain_loss(sub_batch, value, model_config.model.heads.structure_module))
  
  if backbone:
    value["traj"] = value["traj"][...,idx,:]
    folding.backbone_loss(loss, sub_batch, value, model_config.model.heads.structure_module)

  return loss["loss"]

def get_sc_rmsd(true_pos, pred_pos, aa_ident, atoms_to_exclude=None):

  if atoms_to_exclude is None: atoms_to_exclude = ["N","C","O"]
  
  # collect atom indices
  idx,idx_alt = [],[]
  for n,a in enumerate(aa_ident):
    aa = idx_to_resname[a]
    atoms = set(residue_constants.residue_atoms[aa])
    atoms14 = residue_constants.restype_name_to_atom14_names[aa]
    swaps = residue_constants.residue_atom_renaming_swaps.get(aa,{})
    swaps.update({v:k for k,v in swaps.items()})
    for atom in atoms.difference(atoms_to_exclude):
      idx.append(n * 14 + atoms14.index(atom))
      if atom in swaps:
        idx_alt.append(n * 14 + atoms14.index(swaps[atom]))
      else:
        idx_alt.append(idx[-1])
  idx, idx_alt = np.asarray(idx), np.asarray(idx_alt)

  # select atoms
  T, P = true_pos.reshape(-1,3)[idx], pred_pos.reshape(-1,3)[idx]

  # select non-ambigious atoms
  non_amb = idx == idx_alt
  t, p = T[non_amb], P[non_amb]

  # align non-ambigious atoms
  aln = _np_kabsch(t-t.mean(0), p-p.mean(0))
  T,P = (T-t.mean(0)) @ aln, P-p.mean(0)
  P_alt = pred_pos.reshape(-1,3)[idx_alt]-p.mean(0)

  # compute rmsd
  msd = jnp.minimum(jnp.square(T-P).sum(-1),jnp.square(T-P_alt).sum(-1)).mean()
  return jnp.sqrt(msd + 1e-8)

def get_sidechain_rmsd_idx(batch, outputs, idx, model_config, include_ca=True):
  idx_ref = batch["idx"]
  true_aa_idx = batch["aatype"][idx_ref]
  true_pos = all_atom.atom37_to_atom14(batch["all_atom_positions"],batch)[idx_ref,:,:]
  pred_pos = outputs["structure_module"]["final_atom14_positions"][idx,:,:]
  bb_atoms_to_exclude = ["N","C","O"] if include_ca else ["N","CA","C","O"]
  
  return get_sc_rmsd(true_pos, pred_pos, true_aa_idx, bb_atoms_to_exclude)

#################################################################################
#################################################################################
#################################################################################

def _np_len_pw(x, use_jax=True):
  '''compute pairwise distance'''
  _np = jnp if use_jax else np

  x_norm = _np.square(x).sum(-1)
  xx = _np.einsum("...ia,...ja->...ij",x,x)
  sq_dist = x_norm[...,:,None] + x_norm[...,None,:] - 2 * xx

  # due to precision errors the values can sometimes be negative
  if use_jax: sq_dist = jax.nn.relu(sq_dist)
  else: sq_dist[sq_dist < 0] = 0

  # return euclidean pairwise distance matrix
  return _np.sqrt(sq_dist + 1e-8)

def _np_rmsdist(true, pred, use_jax=True):
  '''compute RMSD of distance matrices'''
  _np = jnp if use_jax else np
  t = _np_len_pw(true, use_jax=use_jax)
  p = _np_len_pw(pred, use_jax=use_jax)
  return _np.sqrt(_np.square(t-p).mean() + 1e-8)

def _np_kabsch(a, b, return_v=False, use_jax=True):
  '''get alignment matrix for two sets of coodinates'''
  _np = jnp if use_jax else np
  ab = a.swapaxes(-1,-2) @ b
  u, s, vh = _np.linalg.svd(ab, full_matrices=False)
  flip = _np.linalg.det(u @ vh) < 0
  u_ = _np.where(flip, -u[...,-1].T, u[...,-1].T).T
  if use_jax: u = u.at[...,-1].set(u_)
  else: u[...,-1] = u_
  return u if return_v else (u @ vh)

def _np_rmsd(true, pred, use_jax=True):
  '''compute RMSD of coordinates after alignment'''
  _np = jnp if use_jax else np
  p = true - true.mean(-2,keepdims=True)
  q = pred - pred.mean(-2,keepdims=True)
  p = p @ _np_kabsch(p, q, use_jax=use_jax)
  return _np.sqrt(_np.square(p-q).sum(-1).mean(-1) + 1e-8)

def _np_norm(x, axis=-1, keepdims=True, eps=1e-8, use_jax=True):
  '''compute norm of vector'''
  _np = jnp if use_jax else np
  return _np.sqrt(_np.square(x).sum(axis,keepdims=keepdims) + 1e-8)
  
def _np_len(a, b, use_jax=True):
  '''given coordinates a-b, return length or distance'''
  return _np_norm(a-b, use_jax=use_jax)

def _np_ang(a, b, c, use_acos=False, use_jax=True):
  '''given coordinates a-b-c, return angle'''  
  _np = jnp if use_jax else np
  norm = lambda x: _np_norm(x, use_jax=use_jax)
  ba, bc = b-a, b-c
  cos_ang = (ba * bc).sum(-1,keepdims=True) / (norm(ba) * norm(bc))
  # note the derivative at acos(-1 or 1) is inf, to avoid nans we use cos(ang)
  if use_acos: return _np.arccos(cos_ang)
  else: return cos_ang
  
def _np_dih(a, b, c, d, use_atan2=False, standardize=False, use_jax=True):
  '''given coordinates a-b-c-d, return dihedral'''
  _np = jnp if use_jax else np
  normalize = lambda x: x/_np_norm(x, use_jax=use_jax)
  ab, bc, cd = normalize(a-b), normalize(b-c), normalize(c-d)
  n1,n2 = _np.cross(ab, bc), _np.cross(bc, cd)
  sin_ang = (_np.cross(n1, bc) * n2).sum(-1,keepdims=True)
  cos_ang = (n1 * n2).sum(-1,keepdims=True)
  if use_atan2:
    return _np.arctan2(sin_ang, cos_ang)
  else:
    angs = _np.concatenate([sin_ang, cos_ang],-1)
    if standardize: return normalize(angs)
    else: return angs

def _np_extend(a,b,c, L,A,D, use_jax=True):
  '''
  given coordinates a-b-c,
  c-d (L)ength, b-c-d (A)ngle, and a-b-c-d (D)ihedral
  return 4th coordinate d
  '''
  _np = jnp if use_jax else np
  normalize = lambda x: x/_np_norm(x, use_jax=use_jax)
  bc = normalize(b-c)
  n = normalize(_np.cross(b-a, bc))
  return c + sum([L * _np.cos(A) * bc,
                  L * _np.sin(A) * _np.cos(D) * _np.cross(n, bc),
                  L * _np.sin(A) * _np.sin(D) * -n])

def _np_get_cb(N,CA,C, use_jax=True):
  '''compute CB placement from N, CA, C'''
  return _np_extend(C, N, CA, 1.522, 1.927, -2.143, use_jax=use_jax)
  
def _np_get_6D(all_atom_positions, all_atom_mask=None, use_jax=True):
  '''get 6D features (see TrRosetta paper)'''

  # get CB coordinate
  atom_idx = {k:residue_constants.atom_order[k] for k in ["N","CA","C"]}
  out = {k:all_atom_positions[...,i,:] for k,i in atom_idx.items()}
  out["CB"] = _np_get_cb(**out, use_jax=use_jax)
  
  if all_atom_mask is not None:
    idx = np.fromiter(atom_idx.values(),int)
    out["CB_mask"] = all_atom_mask[...,idx].prod(-1)

  # get pairwise features
  N,A,B = (out[k] for k in ["N","CA","CB"])
  j = {"use_jax":use_jax}
  out.update({"dist":  _np_len_pw(B,**j),
              "phi":   _np_ang(A[...,:,None,:],B[...,:,None,:],B[...,None,:,:],**j),
              "omega": _np_dih(A[...,:,None,:],B[...,:,None,:],B[...,None,:,:],A[...,None,:,:],**j),
              "theta": _np_dih(N[...,:,None,:],A[...,:,None,:],B[...,:,None,:],B[...,None,:,:],**j),
              })
  return out

####################
# 6D loss (see TrRosetta paper)
####################
def _np_get_6D_loss(true, pred, mask=None, use_theta=True, use_dist=False, use_jax=True):
  _np = jnp if use_jax else np

  f = {"T":_np_get_6D(true, mask, use_jax=use_jax),
       "P":_np_get_6D(pred, use_jax=use_jax)}

  for k in f: f[k]["dist"] /= 10.0

  keys = ["omega","phi"]
  if use_theta: keys.append("theta")
  if use_dist: keys.append("dist")
  sq_diff = sum([_np.square(f["T"][k]-f["P"][k]).sum(-1) for k in keys])

  mask = _np.ones(true.shape[0]) if mask is None else f["T"]["CB_mask"]
  mask = mask[:,None] * mask[None,:]
  loss = (sq_diff * mask).sum((-1,-2)) / mask.sum((-1,-2))

  return _np.sqrt(loss + 1e-8).mean()
  
def get_6D_loss(batch, outputs, **kwargs):
  true = batch["all_atom_positions"]
  pred = outputs["structure_module"]["final_atom_positions"]
  mask = batch["all_atom_mask"]
  return _np_get_6D_loss(true, pred, mask, **kwargs)

#################################################################################
#################################################################################
#################################################################################

####################
# update sequence
####################
def soft_seq(seq_logits, temp=1.0, hard=True):
  seq_soft = jax.nn.softmax(seq_logits / temp)
  if hard:
    seq_hard = jax.nn.one_hot(seq_soft.argmax(-1),20)
    return jax.lax.stop_gradient(seq_hard - seq_soft) + seq_soft
  else:
    return seq_soft

def update_seq(seq, inputs, seq_1hot=None, seq_pssm=None, msa_input=None):
  '''update the sequence features'''
  
  if seq_1hot is None: seq_1hot = seq 
  if seq_pssm is None: seq_pssm = seq
  msa_feat = jnp.zeros_like(inputs["msa_feat"]).at[...,0:20].set(seq_1hot).at[...,25:45].set(seq_pssm)
  if seq.ndim == 3:
    target_feat = jnp.zeros_like(inputs["target_feat"]).at[...,1:21].set(seq[0])
  else:
    target_feat = jnp.zeros_like(inputs["target_feat"]).at[...,1:21].set(seq)
    
  inputs.update({"target_feat":target_feat,"msa_feat":msa_feat})

def update_aatype(aatype, inputs):
  if jnp.issubdtype(aatype.dtype, jnp.integer):
    inputs.update({"aatype":aatype,
                   "atom14_atom_exists":residue_constants.restype_atom14_mask[aatype],
                   "atom37_atom_exists":residue_constants.restype_atom37_mask[aatype],
                   "residx_atom14_to_atom37":residue_constants.restype_atom14_to_atom37[aatype],
                   "residx_atom37_to_atom14":residue_constants.restype_atom37_to_atom14[aatype]})
  else:
    restype_atom14_to_atom37 = jax.nn.one_hot(residue_constants.restype_atom14_to_atom37,37)
    restype_atom37_to_atom14 = jax.nn.one_hot(residue_constants.restype_atom37_to_atom14,14)
    inputs.update({"aatype":aatype,
                   "atom14_atom_exists":jnp.einsum("...a,am->...m", aatype, residue_constants.restype_atom14_mask),
                   "atom37_atom_exists":jnp.einsum("...a,am->...m", aatype, residue_constants.restype_atom37_mask),
                   "residx_atom14_to_atom37":jnp.einsum("...a,abc->...bc", aatype, restype_atom14_to_atom37),
                   "residx_atom37_to_atom14":jnp.einsum("...a,abc->...bc", aatype, restype_atom37_to_atom14)})
  
####################
# utils
####################

def pdb_to_string(pdb_file):
  lines = []
  for line in open(pdb_file,"r"):
    if line[:6] == "HETATM" and line[17:20] == "MSE":
      line = "ATOM  "+line[6:17]+"MET"+line[20:]
    if line[:4] == "ATOM":
      lines.append(line)
  return "".join(lines)

def save_pdb(outs, filename="tmp.pdb"):
  seq = outs["seq"].argmax(-1)
  while seq.ndim > 1: seq = seq[0]
  b_factors = np.zeros_like(outs["outputs"]['final_atom_mask'])
  p = protein.Protein(
        aatype=seq,
        atom_positions=outs["outputs"]["final_atom_positions"],
        atom_mask=outs["outputs"]['final_atom_mask'],
        residue_index=jnp.arange(len(seq))+1,
        b_factors=b_factors)
  pdb_lines = protein.to_pdb(p)
  with open(filename, 'w') as f:
    f.write(pdb_lines)

order_restype = {v: k for k, v in residue_constants.restype_order.items()}
idx_to_resname = dict((v,k) for k,v in residue_constants.resname_to_idx.items())
template_aa_map = np.eye(20)[[residue_constants.HHBLITS_AA_TO_ID[order_restype[i]] for i in range(20)]].T

###########################
# MISC
###########################
jalview_color_list = {"Clustal":           ["#80a0f0","#f01505","#00ff00","#c048c0","#f08080","#00ff00","#c048c0","#f09048","#15a4a4","#80a0f0","#80a0f0","#f01505","#80a0f0","#80a0f0","#ffff00","#00ff00","#00ff00","#80a0f0","#15a4a4","#80a0f0"],
                      "Zappo":             ["#ffafaf","#6464ff","#00ff00","#ff0000","#ffff00","#00ff00","#ff0000","#ff00ff","#6464ff","#ffafaf","#ffafaf","#6464ff","#ffafaf","#ffc800","#ff00ff","#00ff00","#00ff00","#ffc800","#ffc800","#ffafaf"],
                      "Taylor":            ["#ccff00","#0000ff","#cc00ff","#ff0000","#ffff00","#ff00cc","#ff0066","#ff9900","#0066ff","#66ff00","#33ff00","#6600ff","#00ff00","#00ff66","#ffcc00","#ff3300","#ff6600","#00ccff","#00ffcc","#99ff00"],
                      "Hydrophobicity":    ["#ad0052","#0000ff","#0c00f3","#0c00f3","#c2003d","#0c00f3","#0c00f3","#6a0095","#1500ea","#ff0000","#ea0015","#0000ff","#b0004f","#cb0034","#4600b9","#5e00a1","#61009e","#5b00a4","#4f00b0","#f60009","#0c00f3","#680097","#0c00f3"],
                      "Helix Propensity":  ["#e718e7","#6f906f","#1be41b","#778877","#23dc23","#926d92","#ff00ff","#00ff00","#758a75","#8a758a","#ae51ae","#a05fa0","#ef10ef","#986798","#00ff00","#36c936","#47b847","#8a758a","#21de21","#857a85","#49b649","#758a75","#c936c9"],
                      "Strand Propensity": ["#5858a7","#6b6b94","#64649b","#2121de","#9d9d62","#8c8c73","#0000ff","#4949b6","#60609f","#ecec13","#b2b24d","#4747b8","#82827d","#c2c23d","#2323dc","#4949b6","#9d9d62","#c0c03f","#d3d32c","#ffff00","#4343bc","#797986","#4747b8"],
                      "Turn Propensity":   ["#2cd3d3","#708f8f","#ff0000","#e81717","#a85757","#3fc0c0","#778888","#ff0000","#708f8f","#00ffff","#1ce3e3","#7e8181","#1ee1e1","#1ee1e1","#f60909","#e11e1e","#738c8c","#738c8c","#9d6262","#07f8f8","#f30c0c","#7c8383","#5ba4a4"],
                      "Buried Index":      ["#00a35c","#00fc03","#00eb14","#00eb14","#0000ff","#00f10e","#00f10e","#009d62","#00d52a","#0054ab","#007b84","#00ff00","#009768","#008778","#00e01f","#00d52a","#00db24","#00a857","#00e619","#005fa0","#00eb14","#00b649","#00f10e"]}


###########################
# to be deprecated functions
###########################
def set_dropout(model_config, dropout=0.0):
  model_config.model.embeddings_and_evoformer.evoformer.msa_row_attention_with_pair_bias.dropout_rate = dropout
  model_config.model.embeddings_and_evoformer.evoformer.triangle_attention_ending_node.dropout_rate = dropout
  model_config.model.embeddings_and_evoformer.evoformer.triangle_attention_starting_node.dropout_rate = dropout
  model_config.model.embeddings_and_evoformer.evoformer.triangle_multiplication_incoming.dropout_rate = dropout
  model_config.model.embeddings_and_evoformer.evoformer.triangle_multiplication_outgoing.dropout_rate = dropout
  model_config.model.embeddings_and_evoformer.template.template_pair_stack.triangle_attention_ending_node.dropout_rate = dropout
  model_config.model.embeddings_and_evoformer.template.template_pair_stack.triangle_attention_starting_node.dropout_rate = dropout
  model_config.model.embeddings_and_evoformer.template.template_pair_stack.triangle_multiplication_incoming.dropout_rate = dropout
  model_config.model.embeddings_and_evoformer.template.template_pair_stack.triangle_multiplication_outgoing.dropout_rate = dropout
  model_config.model.heads.structure_module.dropout = dropout
  return model_config