Spaces:
Running
on
T4
Running
on
T4
File size: 6,913 Bytes
85bd48b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 |
import tensorflow as tf
import tensorflow.keras.backend as K
import tensorflow.compat.v1 as tf1
import tensorflow.compat.v1.keras.backend as K1
tf1.disable_eager_execution()
from tensorflow.keras.models import Model
from tensorflow.keras.layers import Input, Conv2D, Activation, Dense, Lambda, Layer, Concatenate
def get_TrR_weights(filename):
weights = [np.squeeze(w) for w in np.load(filename, allow_pickle=True)]
# remove weights for beta-beta pairing
del weights[-4:-2]
return weights
def get_TrR(blocks=12, trainable=False, weights=None, name="TrR"):
ex = {"trainable":trainable}
# custom layer(s)
class PSSM(Layer):
# modified from MRF to only output tiled 1D features
def __init__(self, diag=0.4, use_entropy=False):
super(PSSM, self).__init__()
self.diag = diag
self.use_entropy = use_entropy
def call(self, inputs):
x,y = inputs
_,_,L,A = [tf.shape(y)[k] for k in range(4)]
with tf.name_scope('1d_features'):
# sequence
x_i = x[0,0,:,:20]
# pssm
f_i = y[0,0]
# entropy
if self.use_entropy:
h_i = K.sum(-f_i * K.log(f_i + 1e-8), axis=-1, keepdims=True)
else:
h_i = tf.zeros((L,1))
# tile and combined 1D features
feat_1D = tf.concat([x_i,f_i,h_i], axis=-1)
feat_1D_tile_A = tf.tile(feat_1D[:,None,:], [1,L,1])
feat_1D_tile_B = tf.tile(feat_1D[None,:,:], [L,1,1])
with tf.name_scope('2d_features'):
ic = self.diag * tf.eye(L*A)
ic = tf.reshape(ic,(L,A,L,A))
ic = tf.transpose(ic,(0,2,1,3))
ic = tf.reshape(ic,(L,L,A*A))
i0 = tf.zeros([L,L,1])
feat_2D = tf.concat([ic,i0], axis=-1)
feat = tf.concat([feat_1D_tile_A, feat_1D_tile_B, feat_2D],axis=-1)
return tf.reshape(feat, [1,L,L,442+2*42])
class instance_norm(Layer):
def __init__(self, axes=(1,2),trainable=True):
super(instance_norm, self).__init__()
self.axes = axes
self.trainable = trainable
def build(self, input_shape):
self.beta = self.add_weight(name='beta',shape=(input_shape[-1],),
initializer='zeros',trainable=self.trainable)
self.gamma = self.add_weight(name='gamma',shape=(input_shape[-1],),
initializer='ones',trainable=self.trainable)
def call(self, inputs):
mean, variance = tf.nn.moments(inputs, self.axes, keepdims=True)
return tf.nn.batch_normalization(inputs, mean, variance, self.beta, self.gamma, 1e-6)
## INPUT ##
inputs = Input((None,None,21),batch_size=1)
A = PSSM()([inputs,inputs])
A = Dense(64, **ex)(A)
A = instance_norm(**ex)(A)
A = Activation("elu")(A)
## RESNET ##
def resnet(X, dilation=1, filters=64, win=3):
Y = Conv2D(filters, win, dilation_rate=dilation, padding='SAME', **ex)(X)
Y = instance_norm(**ex)(Y)
Y = Activation("elu")(Y)
Y = Conv2D(filters, win, dilation_rate=dilation, padding='SAME', **ex)(Y)
Y = instance_norm(**ex)(Y)
return Activation("elu")(X+Y)
for _ in range(blocks):
for dilation in [1,2,4,8,16]:
A = resnet(A, dilation)
A = resnet(A, dilation=1)
## OUTPUT ##
A_input = Input((None,None,64))
p_theta = Dense(25, activation="softmax", **ex)(A_input)
p_phi = Dense(13, activation="softmax", **ex)(A_input)
A_sym = Lambda(lambda x: (x + tf.transpose(x,[0,2,1,3]))/2)(A_input)
p_dist = Dense(37, activation="softmax", **ex)(A_sym)
p_omega = Dense(25, activation="softmax", **ex)(A_sym)
A_model = Model(A_input,Concatenate()([p_theta,p_phi,p_dist,p_omega]))
## MODEL ##
model = Model(inputs, A_model(A),name=name)
if weights is not None: model.set_weights(weights)
return model
def get_TrR_model(L=None, exclude_theta=False, use_idx=False, use_bkg=False, models_path="models"):
def gather_idx(x):
idx = x[1][0]
return tf.gather(tf.gather(x[0],idx,axis=-2),idx,axis=-3)
def get_cce_loss(x, eps=1e-8, only_dist=False):
if only_dist:
true_x = split_feat(x[0])["dist"]
pred_x = split_feat(x[1])["dist"]
loss = -tf.reduce_mean(tf.reduce_sum(true_x*tf.math.log(pred_x + eps),-1),[-1,-2])
return loss * 4
elif exclude_theta:
true_x = split_feat(x[0])
pred_x = split_feat(x[1])
true_x = tf.concat([true_x[k] for k in ["phi","dist","omega"]],-1)
pred_x = tf.concat([pred_x[k] for k in ["phi","dist","omega"]],-1)
loss = -tf.reduce_mean(tf.reduce_sum(true_x*tf.math.log(pred_x + eps),-1),[-1,-2])
return loss * 4/3
else:
return -tf.reduce_mean(tf.reduce_sum(x[0]*tf.math.log(x[1] + eps),-1),[-1,-2])
def get_bkg_loss(x, eps=1e-8):
return -tf.reduce_mean(tf.reduce_sum(x[1]*(tf.math.log(x[1]+eps)-tf.math.log(x[0]+eps)),-1),[-1,-2])
def prep_seq(x_logits):
x_soft = tf.nn.softmax(x_logits,-1)
x_hard = tf.one_hot(tf.argmax(x_logits,-1),20)
x = tf.stop_gradient(x_hard - x_soft) + x_soft
x = tf.pad(x,[[0,0],[0,0],[0,1]])
return x[None]
I_seq_logits = Input((L,20),name="seq_logits")
seq = Lambda(prep_seq,name="seq")(I_seq_logits)
I_true = Input((L,L,100),name="true")
if use_bkg:
I_bkg = Input((L,L,100),name="bkg")
if use_idx:
I_idx = Input((None,),dtype=tf.int32,name="idx")
I_idx_true = Input((None,),dtype=tf.int32,name="idx_true")
pred = []
for nam in ["xaa","xab","xac","xad","xae"]:
print(nam)
TrR = get_TrR(weights=get_TrR_weights(f"{models_path}/model_{nam}.npy"),name=nam)
pred.append(TrR(seq))
pred = sum(pred)/len(pred)
if use_idx:
pred_sub = Lambda(gather_idx, name="pred_sub")([pred,I_idx])
true_sub = Lambda(gather_idx, name="true_sub")([I_true,I_idx_true])
else:
pred_sub = pred
true_sub = I_true
cce_loss = Lambda(get_cce_loss,name="cce_loss")([true_sub, pred_sub])
if use_bkg:
bkg_loss = Lambda(get_bkg_loss,name="bkg_loss")([I_bkg, pred])
loss = Lambda(lambda x: x[0]+0.1*x[1])([cce_loss,bkg_loss])
else:
loss = cce_loss
grad = Lambda(lambda x: tf.gradients(x[0],x[1]), name="grad")([loss,I_seq_logits])
# setup model
inputs = [I_seq_logits, I_true]
outputs = [cce_loss]
if use_bkg:
inputs += [I_bkg]
outputs += [bkg_loss]
if use_idx: inputs += [I_idx, I_idx_true]
model = Model(intputs, outputs + [grad, pred], name="TrR_model")
TrR_model(seq, true, **kwargs):
i = [seq[None],true[None]]
if use_bkg:
i += [kwargs["bkg"][None]]
if use_idx:
pos_idx = kwargs["pos_idx"]
if "pos_idx_ref" not in kwargs or kwargs["pos_idx_ref"] is None:
pos_idx_ref = pos_idx
else:
pos_idx_ref = kwargs["pos_idx_ref"]
i += [pos_idx[None],pos_idx_ref[None]]
*o = model.predict(i)
r = {"cce_loss":o[0][0],"grad":o[-1][0],"pred":o[-2][0]}
if use_bkg: r["bkg_loss"] = o[1][0]
return r
return TrR_model
|