Spaces:
Runtime error
Runtime error
File size: 9,945 Bytes
63858e7 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 |
import h5py
import numpy as np
from functools import partial
from utils.gen_utils import map_nlist, vround
import regex as re
from spacyface.simple_spacy_token import SimpleSpacyToken
ZERO_BUFFER = 12 # Number of decimal places each index takes
main_key = r"{:0" + str(ZERO_BUFFER) + r"}"
suppl_attn_key = r"{:0" + str(ZERO_BUFFER) + r"}_attn"
def zip_len_check(*iters):
"""Zip iterables with a check that they are all the same length"""
if len(iters) < 2:
raise ValueError(f"Expected at least 2 iterables to combine. Got {len(iters)} iterables")
n = len(iters[0])
for i in iters:
n_ = len(i)
if n_ != n:
raise ValueError(f"Expected all iterations to have len {n} but found {n_}")
return zip(*iters)
class SentenceH5Data:
def __init__(self, grp):
self.grp = grp
@property
def n_layers(self):
return self.embeddings.shape[0] - 1 # 1 was added at the input, not a hidden layer
@property
def sentence(self):
return self.grp.attrs['sentence']
@property
def embeddings(self):
return self.grp['embeddings'][:]
@property
def zero_special_embeddings(self):
out = self.embeddings.copy()
out[:, self.mask_is_special] = np.zeros(out[:, self.mask_is_special].shape)
return out
@property
def contexts(self):
return self.grp['contexts'][:]
@property
def zero_special_contexts(self):
out = self.contexts.copy()
out[:, self.mask_is_special] = np.zeros(out[:, self.mask_is_special].shape)
return out
@property
def attentions(self):
"""Return all attentions, including [CLS] and [SEP]
Note that if the hdf5 is created with CLS and SEP attentions, it will have CLS and SEP attentions"""
return self.grp['attentions'][:] # Converts to numpy array
@property
def mask_is_special(self):
return np.logical_or(self.deps == '', self.poss == '')
@property
def tokens(self):
return self.grp.attrs['token']
@property
def poss(self):
return self.grp.attrs['pos']
@property
def deps(self):
return self.grp.attrs['dep']
@property
def is_ents(self):
return self.grp.attrs['is_ent']
@property
def heads(self):
"""Not the attention heads, but rather the head word of the orig sentence"""
return self.grp.attrs['head']
@property
def norms(self):
return self.grp.attrs['norm']
@property
def tags(self):
return self.grp.attrs['tag']
@property
def lemmas(self):
return self.grp.attrs['lemma']
def __len__(self):
return len(self.tokens)
def __repr__(self):
sent_len = 40
if len(self.sentence) > sent_len: s = self.sentence[:(sent_len - 3)] + '...'
else: s = self.sentence
return f"SentenceH5Data({s})"
class TokenH5Data(SentenceH5Data):
"""A wrapper around the HDF5 file storage information allowing easy access to information about each
processed sentence.
Sometimes, and index of -1 is used to represent the entire object in memory
"""
def __init__(self, grp, index):
"""Represents returned from the refmap of the CorpusEmbedding class"""
if type(grp) == SentenceH5Data: super().__init__(grp.grp)
elif type(grp) == h5py._hl.group.Group: super().__init__(grp)
self.index = index
@property
def embedding(self):
return self.embeddings[:, self.index, :]
@property
def context(self):
return self.contexts[:, self.index, :]
@property
def attentions_out(self):
"""Access all attention OUT of this token"""
output = self.attentions[:,:, self.index, :]
return output
@property
def attentions_in(self):
"""Access all attention INTO this token"""
new_attention = self.attentions.transpose((0,1,3,2))
return new_attention[:,:, self.index, :]
def _select_from_attention(self, layer, heads):
if type(heads) is int:
heads = [heads]
# Select layer and heads
modified_attentions = self.attentions[layer, heads].mean(0)
attentions_out = modified_attentions
attentions_in = modified_attentions.transpose()
return attentions_out, attentions_in
def _calc_offset_single(self, attention):
"""Get offset to location of max attention"""
curr_idx = self.index
max_atts = np.argmax(attention)
return max_atts - curr_idx
# Define metadata properties.
# Right now, needs manual curation of fields from SimpleSpacyToken. Ideally, this is automated
@property
def token(self):
return self.tokens[self.index]
@property
def pos(self):
return self.poss[self.index]
@property
def dep(self):
return self.deps[self.index]
@property
def is_ent(self):
return bool(self.is_ents[self.index])
@property
def norm(self):
return self.norms[self.index]
@property
def head(self):
return self.heads[self.index]
@property
def lemma(self):
return self.lemmas[self.index]
@property
def tag(self):
return self.tags[self.index]
def to_json(self, layer, heads, top_k=5, ndigits=4):
"""
Convert token information and attention to return to frontend
Require layer, heads, and top_k to convert the attention into value to return to frontend.
Output:
{
sentence: str
index: number
match: str
is_match: bool
is_next_word: bool
matched_att: {
in: { att: number[]
, offset_to_max: number
, loc_of_max: float
}
out: { att: number[]
, offset_to_max: number
, loc_of_max: float
}
},
matched_att_plus_1: {
in: { att: number[]
, offset_to_max: number
}
out: { att: number[]
, offset_to_max: number
}
}
tokens: List[
{ token: string
, pos: string
, dep: string
, is_ent: boolean
, inward: number[]
, outward: number[]
}
]
}
"""
keys = [
"token",
"pos",
"dep",
"is_ent",
"inward",
"outward",
]
token_arr = []
matched_attentions = {}
N = len(self)
# Iterate through the following
tokens = self.tokens.tolist()
poss = [p.lower() for p in self.poss.tolist()]
deps = [d.lower() for d in self.deps.tolist()]
ents = self.is_ents.tolist()
attentions_out, attentions_in = self._select_from_attention(layer, heads)
matched_att_plus_1 = None
next_index = None
for i, tok_info in enumerate(zip_len_check(
tokens
, poss
, deps
, ents
, attentions_out.tolist()
, attentions_in.tolist())):
def get_interesting_attentions():
return {
"in": {
"att": att_in,
"offset_to_max": self._calc_offset_single(att_in).item(),
# "loc_of_max": np.argmax(att_in), # Broken
},
"out": {
"att": att_out,
"offset_to_max": self._calc_offset_single(att_out).item(),
# "loc_of_max": np.argmax(att_out), # Broken
}
}
# Perform rounding of attentions
rounder = partial(round, ndigits=ndigits)
att_out = map_nlist(rounder, tok_info[-2])
att_in = map_nlist(rounder, tok_info[-1])
obj = {k: v for (k, v) in zip_len_check(keys, tok_info)}
IS_LAST_TOKEN = i == (N-1)
if (i == self.index) or ((i - 1) == self.index):
interesting_attentions = get_interesting_attentions()
if i == self.index:
obj['is_match'] = True
matched_attentions = interesting_attentions
elif (i-1) == self.index:
matched_att_plus_1 = interesting_attentions
obj['is_next_word'] = True
next_index = i
# Edge case for final iteration through sentence
else:
obj['is_match'] = False
obj['is_next_word'] = False
if (IS_LAST_TOKEN and (matched_att_plus_1 is None)):
print("Saving matched_att_plus_1 to: ", interesting_attentions)
obj['is_next_word'] = True
matched_att_plus_1 = get_interesting_attentions()
next_index = i
token_arr.append(obj)
next_token = self.tokens[next_index]
obj = {
"sentence": self.sentence,
"index": self.index,
"match": self.token,
"next_index": next_index,
"match_plus_1": next_token,
"matched_att": matched_attentions,
"matched_att_plus_1": matched_att_plus_1,
"tokens": token_arr,
}
return obj
def __repr__(self):
return f"{self.token}: [{self.pos}, {self.dep}, {self.is_ent}]" |