File size: 18,967 Bytes
13e8f60
0e2fe1b
 
 
 
 
 
 
0e78d33
0e2fe1b
94e939a
 
 
 
0e2fe1b
1b4cb98
1db03cb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b4b42f8
1db03cb
 
 
 
 
b4b42f8
1db03cb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
92d7f44
 
1db03cb
 
 
 
 
 
 
 
f626c18
1db03cb
 
f626c18
 
1db03cb
d13a2b7
1db03cb
71fd3ae
1db03cb
 
 
 
 
 
 
 
212b647
1db03cb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0e2fe1b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
94e939a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0e2fe1b
3be0020
7848c2f
94e939a
1db03cb
7bc9e42
 
94e939a
7bc9e42
 
 
 
 
 
 
 
00dddb7
7bc9e42
00dddb7
7bc9e42
00dddb7
7bc9e42
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7848c2f
94e939a
00dddb7
94e939a
00dddb7
94e939a
00dddb7
94e939a
 
 
 
7bc9e42
94e939a
2fee42c
94e939a
 
 
20a2844
 
94e939a
5b7c7b8
94e939a
 
 
 
 
 
 
 
894f775
 
1db03cb
06a6818
1db03cb
 
894f775
1db03cb
 
 
 
 
 
 
e8da5f2
 
1db03cb
e8da5f2
1db03cb
 
 
e8da5f2
78b7608
e8da5f2
3c58be5
4a39d87
1db03cb
 
 
 
 
 
 
 
 
16075a1
438ca75
 
 
 
 
 
 
 
 
 
 
bffd71f
3c6c4df
62c44e2
4c5dbb5
438ca75
 
 
 
71145ee
c59dcc2
71145ee
4a39d87
438ca75
 
 
 
 
 
 
 
0e2fe1b
d955c69
 
 
 
 
 
 
 
 
 
 
4138ff2
 
bc36179
fa3257d
62c44e2
0c7f89d
d955c69
 
 
 
49925b9
d955c69
4a39d87
e27a8ff
d955c69
d479ee0
d955c69
d479ee0
 
 
 
d955c69
f35256b
0e2fe1b
 
 
 
 
e48d533
7a4c5d9
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
# Libraries
import tensorflow as tf
import os
import pathlib
import time
import datetime
from matplotlib import pyplot as plt
import numpy as np
import cv2 as cv2
import math 
from tensorflow import keras
from tensorflow.keras.models import *
from tensorflow.keras.layers import *
from tensorflow.keras.optimizers import *


###YOLOFACE
import sys

CONF_THRESHOLD = 0.5
NMS_THRESHOLD = 0.4
IMG_WIDTH = 416
IMG_HEIGHT = 416

# Default colors
COLOR_BLUE = (255, 0, 0)
COLOR_GREEN = (0, 255, 0)
COLOR_RED = (0, 0, 255)
COLOR_WHITE = (255, 255, 255)
COLOR_YELLOW = (0, 255, 255)

# Get the names of the output layers
def get_outputs_names(net):

    # Get the names of all the layers in the network
    layers_names = net.getLayerNames()

    # Get the names of the output layers, i.e. the layers with unconnected
    # outputs
    return [layers_names[i - 1] for i in net.getUnconnectedOutLayers()]


# Draw the predicted bounding box
def draw_predict(frame, conf, left, top, right, bottom):
    # Draw a bounding box.
    cv2.rectangle(frame, (left, top), (right, bottom), COLOR_YELLOW, 2)

    text = '{:.2f}'.format(conf)

    # Display the label at the top of the bounding box
    label_size, base_line = cv2.getTextSize(text, cv2.FONT_HERSHEY_SIMPLEX, 0.5, 1)

    top = max(top, label_size[1])
    cv2.putText(frame, text, (left, top - 4), cv2.FONT_HERSHEY_SIMPLEX, 0.4,
                COLOR_WHITE, 1)


def post_process(frame, outs, conf_threshold, nms_threshold):
    frame_height = frame.shape[0]
    frame_width = frame.shape[1]

    # Scan through all the bounding boxes output from the network and keep only
    # the ones with high confidence scores. Assign the box's class label as the
    # class with the highest score.
    confidences = []
    boxes = []
    final_boxes = []
    for out in outs:
        for detection in out:
            scores = detection[5:]
            class_id = np.argmax(scores)
            confidence = scores[class_id]
            if confidence > conf_threshold:
                center_x = int(detection[0] * frame_width)
                center_y = int(detection[1] * frame_height)
                width = int(detection[2] * frame_width)
                height = int(detection[3] * frame_height)
                left = int(center_x - width / 2)
                top = int(center_y - height / 2)
                confidences.append(float(confidence))
                boxes.append([left, top, width, height])

    # Perform non maximum suppression to eliminate redundant
    # overlapping boxes with lower confidences.
    indices = cv2.dnn.NMSBoxes(boxes, confidences, conf_threshold,
                               nms_threshold)
    field = 0
    ratio = 0
    face = 0
    for i in indices:
        box = boxes[i]
        left = box[0]
        top = box[1]
        width = box[2]
        height = box[3]
        final_boxes.append(box)
        
        if len(indices)==1:
            field = 2*(width+height)
            ratio = (field * 100) / (256 *256)
            #print("%.2f" % ratio)
        elif len(indices)>1:
            if len(indices) != i+1:
                field += 2*(width+height)
                ratio = (field * 100) / (256 * 256)
            #if len(indices) == i:
                #print("%.2f" % ratio)
                
        
        if ratio > 0.60:
            face = 1
            #print("face!")
            
        left, top, right, bottom = refined_box(left, top, width, height)
        # draw_predict(frame, confidences[i], left, top, left + width,
        #              top + height)
        draw_predict(frame, confidences[i], left, top, right, bottom)
    return final_boxes, face

class FPS:
    def __init__(self):
        # store the start time, end time, and total number of frames
        # that were examined between the start and end intervals
        self._start = None
        self._end = None
        self._num_frames = 0

    def start(self):
        self._start = datetime.datetime.now()
        return self

    def stop(self):
        self._end = datetime.datetime.now()

    def update(self):
        # increment the total number of frames examined during the
        # start and end intervals
        self._num_frames += 1

    def elapsed(self):
        # return the total number of seconds between the start and
        # end interval
        return (self._end - self._start).total_seconds()

    def fps(self):
        # compute the (approximate) frames per second
        return self._num_frames / self.elapsed()

def refined_box(left, top, width, height):
    right = left + width
    bottom = top + height

    original_vert_height = bottom - top
    top = int(top + original_vert_height * 0.15)
    bottom = int(bottom - original_vert_height * 0.05)

    margin = ((bottom - top) - (right - left)) // 2
    left = left - margin if (bottom - top - right + left) % 2 == 0 else left - margin - 1

    right = right + margin

    return left, top, right, bottom


model_cfg = 'yolov3-face.cfg'
model_weights = 'yolov3-wider_16000.weights'


net = cv2.dnn.readNetFromDarknet(model_cfg, model_weights)
net.setPreferableBackend(cv2.dnn.DNN_BACKEND_OPENCV)
net.setPreferableTarget(cv2.dnn.DNN_TARGET_CPU)


def face_detection(image):

    output_file = ''
    index = 1


    while True:
        image = np.array(image)
        # Create a 4D blob from a frame.
        blob = cv2.dnn.blobFromImage(image, 1 / 255, (IMG_WIDTH, IMG_HEIGHT),[0, 0, 0], 1, crop=False)

        # Sets the input to the network
        net.setInput(blob)

        # Runs the forward pass to get output of the output layers
        outs = net.forward(get_outputs_names(net))

        # Remove the bounding boxes with low confidence
        faces = post_process(image, outs, CONF_THRESHOLD, NMS_THRESHOLD)
        
        #print('[i] ==> # detected faces: {}'.format(len(faces)))
        #print('#' * 60)

        # initialize the set of information we'll displaying on the frame
        info = [
            ('number of faces detected', '{}'.format(len(faces)))
        ]
        
        """
        for (i, (txt, val)) in enumerate(info):
            text = '{}: {}'.format(txt, val)
            cv2.putText(frame, text, (10, (i * 20) + 20),
                        cv2.FONT_HERSHEY_SIMPLEX, 0.4, COLOR_RED, 1)
        """
        return faces[1]

        

    cap.release()
    cv2.destroyAllWindows()

###PIX2PIX
def color_imread(path):
    img = cv2.imread(path)
    img = cv2.cvtColor(img , cv2.COLOR_BGR2RGB)
    img = (img/127.5) - 1
    img = img.astype(np.float32)
    return img

def gray_imread(path):
    img = cv2.imread(path)
    img = cv2.cvtColor(img ,cv2.COLOR_BGR2GRAY)
    img = img.astype(np.float32)
    return img


def reshape(gray_img):
  gray_img = np.asarray(gray_img)
  gray_img = gray_img.reshape(256,256,1)
  return gray_img


array_Gen_loss=[]

def histogram_graphic(img):
  hist,bins = np.histogram(img.flatten(),256,[0,256])
  cdf = hist.cumsum()
  cdf_normalized = cdf * float(hist.max()) / cdf.max()
  plt.plot(cdf_normalized, color = 'b')
  plt.hist(img.flatten(),256,[0,256], color = 'r')
  plt.xlim([0, 230])
  plt.legend(('cdf','histogram'), loc = 'upper left')
  plt.show()

def preprocessing(path):
  img = cv2.imread(path)
  img = np.asarray(img).reshape(256,256,3)
  #print(img.shape)
  #cv2.imshow(img)
  #cv2.imwrite("/content/drive/MyDrive/ColabNotebooks/enhance/Before_hist_equalizer.png",img)
    
  #Işık ayarı
  hsv = cv2.cvtColor(img, cv2.COLOR_BGR2HSV) #hsv formatında gerekiyor
  hue, sat, val = cv2.split(hsv)

  mid = 0.5
  mean = np.mean(val)
  gamma = math.log(mid*255)/math.log(mean)
  #print("Gamma:",gamma)
  #Çıkan gamma değerine göre ters işlem uygulayacak


def image_colorfulness(image):
    # split the image into its respective RGB components
    (B, G, R) = cv2.split(image.astype("float"))

    # compute rg = R - G
    rg = np.absolute(R - G)

    # compute yb = 0.5 * (R + G) - B
    yb = np.absolute(0.5 * (R + G) - B)

    # compute the mean and standard deviation of both `rg` and `yb`
    (rbMean, rbStd) = (np.mean(rg), np.std(rg))
    (ybMean, ybStd) = (np.mean(yb), np.std(yb))

    # combine the mean and standard deviations
    stdRoot = np.sqrt((rbStd ** 2) + (ybStd ** 2))
    meanRoot = np.sqrt((rbMean ** 2) + (ybMean ** 2))

    # derive the "colorfulness" metric and return it
    return stdRoot + (0.3 * meanRoot) # sınırı 24

from PIL import Image, ImageEnhance
def add_saturation(path):
  clr = cv2.imread(path)
  value = image_colorfulness(clr)
  print(value)
  img = Image.open(path)
  enhanced_obj = ImageEnhance.Color(img)
  if value<30 :  #renk doygunluğu iyi durumda çıkanları da bir miktar arttırmak için sınırı 30 yapıyoruz 
    enhanced_obj.enhance((30-value)*0.1 + 0.75).save("enhance/deneme_sat.jpg")

#add_saturation("/content/drive/MyDrive/ColabNotebooks/enhance/cikti2.jpeg")

def unsharp_mask(image, kernel_size=(5, 5), sigma=1.0, amount=1.0, threshold=0):
    """Return a sharpened version of the image, using an unsharp mask."""
    blurred = cv2.GaussianBlur(image, kernel_size, sigma)
    sharpened = float(amount + 1) * image - float(amount) * blurred
    sharpened = np.maximum(sharpened, np.zeros(sharpened.shape))
    sharpened = np.minimum(sharpened, 255 * np.ones(sharpened.shape))
    sharpened = sharpened.round().astype(np.uint8)
    if threshold > 0:
        low_contrast_mask = np.absolute(image - blurred) < threshold
        np.copyto(sharpened, image, where=low_contrast_mask)
    return sharpened

def example(image,name):
    sharpened_image = unsharp_mask(image)
    cv2.imwrite(name, sharpened_image)


def ssim_psnr(pre,target):
    ssim_res = ssim(pre,target)
    psnr_res = psnr(pre,target)
    ssim_results.append(ssim_res)
    psnr_results.append(ssim_results)

def alexnet(pretrained_weights = None,input_size = (256,256,3)):
    model = Sequential()
    model.add(Conv2D(input_shape=input_size, filters= 512, kernel_size =(11,11) ,strides=(4,4), activation = keras.layers.LeakyReLU(alpha=0.01)))
    model.add(MaxPooling2D(pool_size=(3, 3), strides=(2,2)))
    
    model.add(Conv2D(filters= 256, kernel_size =(5,5) ,strides=(2,2), activation = keras.layers.LeakyReLU(alpha=0.01) , padding='same'))
    model.add(MaxPooling2D(pool_size=(3, 3), strides=(2,2)))
    
    model.add(Conv2D(filters= 128, kernel_size =(3,3) , activation = keras.layers.LeakyReLU(alpha=0.01) , padding='same'))
    model.add(Conv2D(filters= 32, kernel_size =(3,3) , activation = keras.layers.LeakyReLU(alpha=0.01) , padding='same'))
    model.add(MaxPooling2D(pool_size=(3, 3), strides=(2,2)))
    
    model.add(Flatten())
    model.add(Dense(4096 , activation = keras.layers.LeakyReLU(alpha=0.01)))
    model.add(Dropout(0.3))
    model.add(Dense(4096 , activation = keras.layers.LeakyReLU(alpha=0.01)))
    model.add(Dropout(0.5))
    model.add(Dense(256 , activation = keras.layers.LeakyReLU(alpha=0.01)))
    model.add(Dropout(0.3))
    model.add(Dense(2 , activation='softmax'))
    
    return model

def result(Input,Choice,Step):
    
    if Choice=="Place-Coloring": 
        ###ALEXNET
        model = alexnet()
        model.load_weights('indoor_outdoor.h5')  
        
        image = cv2.cvtColor(Input,cv2.COLOR_BGR2RGB)
        image = cv2.resize(image, (256,256), interpolation = cv2.INTER_AREA)
        image = np.array(image).reshape(-1,256,256,3)
        pred = model.predict(image)
        result = np.argmax(pred, axis=1)
        
        if int(result[0]) == 1:
          if Step == 1.0:
            pre_trained = tf.keras.models.load_model("indoor_1.h5")
          if Step == 2.0:
            pre_trained = tf.keras.models.load_model("indoor_2.h5")
          if Step == 3.0:
            pre_trained = tf.keras.models.load_model("indoor_3.h5")
           
          size0 = Input.shape[0]
          size1 = Input.shape[1]
          start = Input
          Input = cv2.cvtColor(Input,cv2.COLOR_RGB2BGR)
          Input = cv2.resize(Input, (256,256), interpolation = cv2.INTER_AREA)
          Input = cv2.cvtColor(Input , cv2.COLOR_BGR2GRAY)
          Input = np.array(Input).reshape(1,256,256,1)
          prediction = pre_trained(Input,training=True)
          Input = prediction[0]
          Input = (Input+1)*127.5 
          Input = np.uint8(Input)
          Input = cv2.resize(Input, (size1,size0), interpolation = cv2.INTER_AREA)
          Input = unsharp_mask(Input)
          finish = Input
          mse = np.mean((start - finish) ** 2)
          MAX = np.iinfo(start.dtype).max
          if mse == 0:
            Psnr = 100
          else:
            Psnr = 20 * math.log10(MAX / math.sqrt(mse))
          return Input,Psnr
          
        if int(result[0]) == 0:        
        
          if Step == 1.0:
            pre_trained = tf.keras.models.load_model("outdoor_1.h5")
          if Step == 2.0:
            pre_trained = tf.keras.models.load_model("outdoor_2.h5")
          if Step == 3.0:
            pre_trained = tf.keras.models.load_model("outdoor_3.h5")
            
          size0 = Input.shape[0]
          size1 = Input.shape[1]
          start = Input
          Input = cv2.cvtColor(Input,cv2.COLOR_RGB2BGR)
          Input = cv2.resize(Input, (256,256), interpolation = cv2.INTER_AREA)
          Input = cv2.cvtColor(Input , cv2.COLOR_BGR2GRAY)
          Input = np.array(Input).reshape(1,256,256,1)
          prediction = pre_trained(Input,training=True)
          Input = prediction[0]
          Input = (Input+1)*127.5 
          Input = np.uint8(Input)
          Input = cv2.resize(Input, (size1,size0), interpolation = cv2.INTER_AREA)
          Input = unsharp_mask(Input)
          finish = Input
          mse = np.mean((start - finish) ** 2)
          MAX = np.iinfo(start.dtype).max
          if mse == 0:
            Psnr = 100
          else:
            Psnr = 20 * math.log10(MAX / math.sqrt(mse))
          return Input,Psnr
    
    if Choice=="Face-Coloring":
      test_face = face_detection(Input)
      if test_face != 1:
        Psnr = -1
        return Input, Psnr
      else:
        if Step == 1.0:
          pre_trained = tf.keras.models.load_model("face_1.h5")
        if Step == 2.0:
          pre_trained = tf.keras.models.load_model("face_2.h5")
        if Step == 3.0:
          pre_trained = tf.keras.models.load_model("face_3.h5")
          
        size0 = Input.shape[0]
        size1 = Input.shape[1]
        start = Input
        Input = cv2.resize(Input, (256,256), interpolation = cv2.INTER_AREA)
        Input = cv2.cvtColor(Input , cv2.COLOR_BGR2GRAY)
        Input = np.array(Input).reshape(1,256,256,1)
        prediction = pre_trained(Input,training=True)
        Input = prediction[0]
        Input = (Input+1)*127.5
        Input = np.uint8(Input)
        Input = cv2.resize(Input, (size1,size0), interpolation = cv2.INTER_AREA)
        Input = unsharp_mask(Input)
        finish = Input
        mse = np.mean((start - finish) ** 2)
        MAX = np.iinfo(start.dtype).max
        if mse == 0:
          Psnr = 100
        else:
          Psnr = 20 * math.log10(MAX / math.sqrt(mse))
        return Input,Psnr
          
    if Choice =="Enhancement":
        if Step == 1.0:
          pre_trained = tf.keras.models.load_model("generatorLR-HR_300.h5")
        if Step == 2.0:
          pre_trained = tf.keras.models.load_model("generatorLR-HR_300.h5")
        if Step == 3.0:
          pre_trained = tf.keras.models.load_model("generatorLR-HR_300.h5")
     
        size0 = Input.shape[0]
        size1 = Input.shape[1]
        start = Input
        Input = cv2.resize(Input, (256,256), interpolation = cv2.INTER_AREA)
        Input = cv2.cvtColor(Input , cv2.COLOR_BGR2RGB)
        Input = (Input/127.5) - 1
        Input = Input.astype(np.float32)
        Input = np.array(Input).reshape(1,256,256,3)
        prediction = pre_trained(Input,training=True)
        Input = prediction[0]
        Input = (Input+1)*127.5
        Input = np.uint8(Input)
        Input = np.array(Input).reshape(256,256,3)
        Input = cv2.cvtColor(Input , cv2.COLOR_BGR2RGB)
        Input = cv2.resize(Input, (size1,size0), interpolation = cv2.INTER_AREA)
        Input = unsharp_mask(Input)
        finish = Input
        mse = np.mean((start - finish) ** 2)
        MAX = np.iinfo(start.dtype).max
        if mse == 0:
          Psnr = 100
        else:
          Psnr = 20 * math.log10(MAX / math.sqrt(mse))
        return Input,Psnr

    if Choice=="Repair":
        if Step == 1.0:
          pre_trained = tf.keras.models.load_model("Repair_1.h5")
        if Step == 2.0:
          pre_trained = tf.keras.models.load_model("Repair_2.h5")
        if Step == 3.0:
          pre_trained = tf.keras.models.load_model("Repair_3.h5")
          
        size0 = Input.shape[0]
        size1 = Input.shape[1]
        start = Input
        start = cv2.cvtColor(start , cv2.COLOR_RGB2GRAY)
        start = np.array(start).reshape(256,256)       
        Input = cv2.resize(Input, (256,256), interpolation = cv2.INTER_AREA)
        Input = cv2.cvtColor(Input , cv2.COLOR_RGB2GRAY)
        Input = Input.astype(np.float32)
        Input = np.array(Input).reshape(1,256,256,1)
        prediction = pre_trained(Input,training=True)
        Input = prediction[0]
        Input = (Input+1)*127.5
        Input = np.uint8(Input)
        Input = np.array(Input).reshape(256,256,3)
        Input = cv2.resize(Input, (size1,size0), interpolation = cv2.INTER_AREA)
        Input = unsharp_mask(Input)
        Input = cv2.cvtColor(Input , cv2.COLOR_RGB2GRAY)
        finish = Input
        mse = np.mean((start - finish) ** 2)
        MAX = np.iinfo(start.dtype).max
        if mse == 0:
          Psnr = 100
        else:
          Psnr = 20 * math.log10(MAX / math.sqrt(mse))
        return Input,Psnr

#lst = cv2.imread('/content/drive/MyDrive/ColabNotebooks/enhance/low-sat.jpg')
#r = result(lst)
#cv2.imshow(r)

import gradio as gr
gr.Interface(fn=result, inputs=[gr.inputs.Image(type="numpy",image_mode="RGB"), gr.inputs.Radio(
choices=["Place-Coloring","Face-Coloring","Enhancement", "Repair"]),gr.inputs.Slider(minimum=1.0,maximum=3.0,default=3.0,step=1.0)], outputs=[gr.outputs.Image(type="numpy", label="Output"),gr.outputs.Textbox(label="Psnr Between Input and Output")], live=True,title="Color, Enhancement, Restoration for Old Images - ImgCERO",examples=[["repair.png","Repair",3.0],["enhancement.png","Enhancement",3.0],["face_color.png","Face-Coloring",3.0],["indoor_color.png","Place-Coloring",3.0],["outdoor_color.png","Place-Coloring",3.0]],css=""" body {background-color: rgba(127,191,63,0.48)} """,article=""" <a href="https://docs.google.com/document/d/19k6dyR5x_hd1M0yoU8i49dlDWvFmtnBT/edit?usp=sharing&ouid=115743073712072785012&rtpof=true&sd=true" download="example.docx"><img src="https://img.icons8.com/external-itim2101-lineal-color-itim2101/64/000000/external-article-blogger-and-influencer-itim2101-lineal-color-itim2101-1.png" alt="Article"></a>""").launch(debug="True")