File size: 16,038 Bytes
9375743
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
import tensorflow as tf
import os
import pathlib
import time
import datetime
from matplotlib import pyplot as plt
from IPython import display
from glob import glob
import numpy as np
import cv2
import math 
import keras

import zipfile
with zipfile.ZipFile("NewDataSet.zip", 'r') as zip_ref:
    zip_ref.extractall("")

#tuz-karabiber gürültüsü
def saltpepperNoise(image):
  row,col,ch = image.shape
  s_vs_p = 0.5
  amount = 0.004
  out = image
  # Salt mode
  num_salt = np.ceil(amount * image.size * s_vs_p)
  coords = [np.random.randint(0, i - 1, int(num_salt))
            for i in image.shape]
  out[coords] = 1

  # Pepper mode
  num_pepper = np.ceil(amount* image.size * (1. - s_vs_p))
  coords = [np.random.randint(0, i - 1, int(num_pepper))
            for i in image.shape]
  out[coords] = 0
  return out

def color_imread(path):
    img = cv2.imread(path)
    img = cv2.cvtColor(img , cv2.COLOR_BGR2RGB)
    img = (img/127.5) - 1
    img = img.astype(np.float32)
    return img

def gray_imread(path):
    img = cv2.imread(path)
    img = cv2.cvtColor(img ,cv2.COLOR_BGR2GRAY)
    img = img.astype(np.float32)
    return img

def load():
  input_paths = sorted(glob('NewDataSet/*'))
  real_paths = sorted(glob('NewDataSet/*'))
  input_images = []
  real_images = []
  for path in input_paths:
      image = gray_imread(path)
      input_images.append(image)
  for path in real_paths:
      image = color_imread(path)
      real_images.append(image)

  return input_images , real_images

def reshape(gray_img):
  gray_img = np.asarray(gray_img)
  gray_img = gray_img.reshape(256,256,1)
  return gray_img

input_images , real_images = load()

#test = gray_imread("/content/drive/MyDrive/ColabNotebooks/enhance/landscape.png")
#test = cv2.resize(test,(256,256))

for i in range(len(input_images)):
  input_images[i] = reshape(input_images[i])

#test = reshape(test)

#print(np.asarray(test).shape)

def ssim(original,predict):
   ssim = tf.image.ssim(original, predict, max_val=1.0, filter_size=11, filter_sigma=1.5, k1=0.01, k2=0.03)
   return ssim

def psnr(img1, img2):
  psnr = tf.image.psnr(img1, img2, max_val=255)
  return psnr

array_Gen_loss=[]

def histogram_graphic(img):
  hist,bins = np.histogram(img.flatten(),256,[0,256])
  cdf = hist.cumsum()
  cdf_normalized = cdf * float(hist.max()) / cdf.max()
  plt.plot(cdf_normalized, color = 'b')
  plt.hist(img.flatten(),256,[0,256], color = 'r')
  plt.xlim([0, 230])
  plt.legend(('cdf','histogram'), loc = 'upper left')
  plt.show()

def preprocessing(path):
  img = cv2.imread(path)
  img = np.asarray(img).reshape(256,256,3)
  #print(img.shape)
  #cv2.imshow(img)
  #cv2.imwrite("/content/drive/MyDrive/ColabNotebooks/enhance/Before_hist_equalizer.png",img)
    
  #Işık ayarı
  hsv = cv2.cvtColor(img, cv2.COLOR_BGR2HSV) #hsv formatında gerekiyor
  hue, sat, val = cv2.split(hsv)

  mid = 0.5
  mean = np.mean(val)
  gamma = math.log(mid*255)/math.log(mean)
  #print("Gamma:",gamma)
  #Çıkan gamma değerine göre ters işlem uygulayacak

  #value kanalında gamma correction
  val_gamma = np.power(val, gamma).clip(0,255).astype(np.uint8)

  # yeni value kanalı orijinal hue ve sat kanallarıyla birleştiriliyor 
  hsv_gamma = cv2.merge([hue, sat, val_gamma])
  img_gamma = cv2.cvtColor(hsv_gamma, cv2.COLOR_HSV2BGR)
  cv2.imwrite("/content/drive/MyDrive/ColabNotebooks/img_gamma.png",img_gamma)
  #cv2.imshow(img_gamma)

  #Adaptive Histogram Equalization
  gamma_path = "/content/drive/MyDrive/ColabNotebooks/img_gamma.png"
  img2 = cv2.imread(gamma_path,0)
  img2 = np.asarray(img2).reshape(256,256,1)
  clahe = cv2.createCLAHE(clipLimit=2.0, tileGridSize=(8, 8))
  #clipLimit -> Kontrast sınırı
  clahe_equ = clahe.apply(img2)
  cv2.imshow(clahe_equ)
  cv2.imwrite("/content/drive/MyDrive/ColabNotebooks/enhance/After_clahe_equalizer.png",clahe_equ)
  #return clahe_equ

#preprocessing("/content/drive/MyDrive/ColabNotebooks/enhance/landscape.png")

def image_colorfulness(image):
    # split the image into its respective RGB components
    (B, G, R) = cv2.split(image.astype("float"))

    # compute rg = R - G
    rg = np.absolute(R - G)

    # compute yb = 0.5 * (R + G) - B
    yb = np.absolute(0.5 * (R + G) - B)

    # compute the mean and standard deviation of both `rg` and `yb`
    (rbMean, rbStd) = (np.mean(rg), np.std(rg))
    (ybMean, ybStd) = (np.mean(yb), np.std(yb))

    # combine the mean and standard deviations
    stdRoot = np.sqrt((rbStd ** 2) + (ybStd ** 2))
    meanRoot = np.sqrt((rbMean ** 2) + (ybMean ** 2))

    # derive the "colorfulness" metric and return it
    return stdRoot + (0.3 * meanRoot) # sınırı 24

from PIL import Image, ImageEnhance
def add_saturation(path):
  clr = cv2.imread(path)
  value = image_colorfulness(clr)
  print(value)
  img = Image.open(path)
  enhanced_obj = ImageEnhance.Color(img)
  if value<30 :  #renk doygunluğu iyi durumda çıkanları da bir miktar arttırmak için sınırı 30 yapıyoruz 
    enhanced_obj.enhance((30-value)*0.1 + 0.75).save("enhance/deneme_sat.jpg")

#add_saturation("/content/drive/MyDrive/ColabNotebooks/enhance/cikti2.jpeg")

def unsharp_mask(image, kernel_size=(5, 5), sigma=1.0, amount=1.0, threshold=0):
    """Return a sharpened version of the image, using an unsharp mask."""
    blurred = cv2.GaussianBlur(image, kernel_size, sigma)
    sharpened = float(amount + 1) * image - float(amount) * blurred
    sharpened = np.maximum(sharpened, np.zeros(sharpened.shape))
    sharpened = np.minimum(sharpened, 255 * np.ones(sharpened.shape))
    sharpened = sharpened.round().astype(np.uint8)
    if threshold > 0:
        low_contrast_mask = np.absolute(image - blurred) < threshold
        np.copyto(sharpened, image, where=low_contrast_mask)
    return sharpened

def example(image,name):
    sharpened_image = unsharp_mask(image)
    cv2.imwrite(name, sharpened_image)

#s_img= cv2.imread("/content/drive/MyDrive/ColabNotebooks/enhance/deneme.jpg")
#example(s_img,"/content/drive/MyDrive/ColabNotebooks/enhance/deneme_sharp.jpg")

#img2 = cv2.imread("/content/drive/MyDrive/ColabNotebooks/enhance/landscape.png")
#newimg2 = cv2.imread("/content/drive/MyDrive/ColabNotebooks/enhance/Output/nadam_image9.png")

#psnr(img2,newimg2)
#ssim(img2,newimg2)

import math
import cv2
import numpy as np

#original = cv2.imread("/content/drive/MyDrive/ColabNotebooks/enhance/landscape.png",0)
#contrast = cv2.imread("/content/drive/MyDrive/ColabNotebooks/enhance/After_clahe_equalizer_with_gamma.png",0)

print(original.dtype)
def psnr(img1, img2, MAX=None):
    if MAX is None:
		    MAX = np.iinfo(img1.dtype).max
    mse = np.mean((img1 - img2) ** 2)
    if mse == 0:
        return 100
    return 20 * math.log10(MAX / math.sqrt(mse))


#db = psnr(original, contrast)
#print(db)

OUTPUT_CHANNELS = 3

def downsample(filters, size, apply_batchnorm=True):
  initializer = tf.random_normal_initializer(0., 0.02)

  result = tf.keras.Sequential()
  result.add(tf.keras.layers.Conv2D(filters, size, strides=2, padding='same',kernel_initializer=initializer, use_bias=False))
  # Burada 2'ye bölüyoruz 256 --> 128
  if apply_batchnorm:
    result.add(tf.keras.layers.BatchNormalization())

  result.add(tf.keras.layers.LeakyReLU())

  return result

def upsample(filters, size, apply_dropout=False):
  initializer = tf.random_normal_initializer(0., 0.02)

  result = tf.keras.Sequential()
  result.add(
    tf.keras.layers.Conv2DTranspose(filters, size, strides=2,
                                    padding='same',
                                    kernel_initializer=initializer,
                                    use_bias=False))
# burada da 2 kat arttırıyoruz
  result.add(tf.keras.layers.BatchNormalization())

  if apply_dropout:
      result.add(tf.keras.layers.Dropout(0.5))

  result.add(tf.keras.layers.ReLU())

  return result

def Generator(tpu=False):
  inputs = tf.keras.layers.Input(shape=[256, 256, 1])

  down_stack = [
    downsample(64, 4, apply_batchnorm=False),  # (batch_size, 128, 128, 64)
    downsample(128, 4),  # (batch_size, 64, 64, 128)
    downsample(256, 4),  # (batch_size, 32, 32, 256)
    downsample(512, 4),  # (batch_size, 16, 16, 512)
    downsample(512, 4),  # (batch_size, 8, 8, 512)
    downsample(512, 4),  # (batch_size, 4, 4, 512)
    downsample(512, 4),  # (batch_size, 2, 2, 512)
    downsample(512, 4),  # (batch_size, 1, 1, 512)
  ]

  up_stack = [
    upsample(512, 4, apply_dropout=True),  # (batch_size, 2, 2, 1024)
    upsample(512, 4, apply_dropout=True),  # (batch_size, 4, 4, 1024)
    upsample(512, 4, apply_dropout=True),  # (batch_size, 8, 8, 1024)
    upsample(512, 4),  # (batch_size, 16, 16, 1024)
    upsample(256, 4),  # (batch_size, 32, 32, 512)
    upsample(128, 4),  # (batch_size, 64, 64, 256)
    upsample(64, 4),  # (batch_size, 128, 128, 128)
  ]
  initializer = tf.random_normal_initializer(0., 0.02)
  last = tf.keras.layers.Conv2DTranspose(OUTPUT_CHANNELS, 4,
                                         strides=2,
                                         padding='same',
                                         kernel_initializer=initializer,
                                         activation='tanh')  # (batch_size, 256, 256, 3)
# Build U-NET
  x = inputs

  # Downsampling through the model
  skips = []
  for down in down_stack:
    x = down(x)
    skips.append(x)

  skips = reversed(skips[:-1]) # son elemani almadan terste yazdirir

  # Upsampling and establishing the skip connections
  for up, skip in zip(up_stack, skips):
    x = up(x)
    x = tf.keras.layers.Concatenate()([x, skip])

  x = last(x)
  model = tf.keras.Model(inputs=inputs, outputs=x)
  
  return model

pre_trained = Generator()
pre_trained.compile(optimizer='adam',loss=tf.keras.losses.BinaryCrossentropy(from_logits=True))

from tensorflow.keras.models import *
from tensorflow.keras.layers import *
from tensorflow.keras.optimizers import *

integer = (input_images[0]+1)*127.5

LAMBDA = 100
loss_object = tf.keras.losses.BinaryCrossentropy(from_logits=True)

def generator_loss(disc_generated_output, gen_output, target,total_loop):
  gan_loss = loss_object(tf.ones_like(disc_generated_output), disc_generated_output)
  # Mean absolute error
  l1_loss = tf.reduce_mean(tf.abs(target - gen_output))
  total_gen_loss = gan_loss + (LAMBDA * l1_loss)
  if total_loop % 2 == 0:
    array_Gen_loss.append(total_gen_loss)
  return total_gen_loss, gan_loss, l1_loss

ssim_results = []
psnr_results = []

def ssim_psnr(pre,target):
    ssim_res = ssim(pre,target)
    psnr_res = psnr(pre,target)
    ssim_results.append(ssim_res)
    psnr_results.append(ssim_results)

def Discriminator():
  initializer = tf.random_normal_initializer(0., 0.02)

  inp = tf.keras.layers.Input(shape=[256, 256, 1], name='input_image') # lr
  tar = tf.keras.layers.Input(shape=[256, 256, 3], name='target_image') # hr

  x = tf.keras.layers.concatenate([inp, tar])  # (batch_size, 256, 256, channels*2)

  down1 = downsample(64, 4, False)(x)  # (batch_size, 128, 128, 64)
  down2 = downsample(128, 4)(down1)  # (batch_size, 64, 64, 128)
  down3 = downsample(256, 4)(down2)  # (batch_size, 32, 32, 256)

  zero_pad1 = tf.keras.layers.ZeroPadding2D()(down3)  # (batch_size, 34, 34, 256)
  conv = tf.keras.layers.Conv2D(512, 4, strides=1,
                                kernel_initializer=initializer,
                                use_bias=False)(zero_pad1)  # (batch_size, 31, 31, 512)

  batchnorm1 = tf.keras.layers.BatchNormalization()(conv)

  leaky_relu = tf.keras.layers.LeakyReLU()(batchnorm1)

  zero_pad2 = tf.keras.layers.ZeroPadding2D()(leaky_relu)  # (batch_size, 33, 33, 512)

  last = tf.keras.layers.Conv2D(1, 4, strides=1,
                                kernel_initializer=initializer)(zero_pad2)  # (batch_size, 30, 30, 1)

  return tf.keras.Model(inputs=[inp, tar], outputs=last)

discriminator = Discriminator()

def discriminator_loss(disc_real_output, disc_generated_output):
  real_loss = loss_object(tf.ones_like(disc_real_output), disc_real_output)

  generated_loss = loss_object(tf.zeros_like(disc_generated_output), disc_generated_output)

  total_disc_loss = real_loss + generated_loss #  0.5 ile de çarpabilirsin

  return total_disc_loss

generator_optimizer = tf.keras.optimizers.Nadam(learning_rate=0.001, beta_1=0.9, beta_2=0.999, epsilon=1e-07, name="Nadam")
discriminator_optimizer = tf.keras.optimizers.Nadam(learning_rate=0.001, beta_1=0.9, beta_2=0.999, epsilon=1e-07, name="Nadam")

def generate_images(model, test_input,step):
  if (step%1 == 0):
    prediction = model(test_input, training=True)
    pre = prediction[0]
    pre = (pre+1)*127.5
    pre = np.uint8(pre)
    name = 'image{step}.png'.format(step=step)
    plt.imsave(name,pre)

test = np.array(test).reshape(1,256,256,1)
input_images = np.array(input_images).reshape(-1,1,256,256,1)
real_images = np.array(real_images).reshape(-1,1,256,256,3)
print(real_images[0].shape)

def train_step(input_image, target, step):
  with tf.GradientTape() as gen_tape, tf.GradientTape() as disc_tape:
    gen_output = pre_trained(input_image, training=True)

    disc_real_output = discriminator([input_image, target], training=True)
    disc_generated_output = discriminator([input_image, gen_output], training=True)

    gen_total_loss, gen_gan_loss, gen_l1_loss = generator_loss(disc_generated_output, gen_output, target,10)
    disc_loss = discriminator_loss(disc_real_output, disc_generated_output)
  
  generator_gradients = gen_tape.gradient(gen_total_loss,
                                          pre_trained.trainable_variables)
  discriminator_gradients = disc_tape.gradient(disc_loss,
                                               discriminator.trainable_variables)

  generator_optimizer.apply_gradients(zip(generator_gradients,
                                          pre_trained.trainable_variables))
  discriminator_optimizer.apply_gradients(zip(discriminator_gradients,
                                              discriminator.trainable_variables))

def fit(input_images,real_images,test,steps):
  example_input = test
  start = time.time()
  step = 0
  i = 0
  while step<steps:
    print("Step = ",step)
    while i < len(input_images):
          train_step(input_images[i], real_images[i], step)
          if (i%200 == 0):
            print('i= ',i)
          i +=1
    generate_images(pre_trained, example_input,step)
    step+=1
    i = 0
  generate_images(pre_trained, example_input,step)

fit(input_images,real_images,test,10)

#pre_trained.save("enhance/pix2pix.h5")

a = array_Gen_loss
a = np.asarray(a)
plt.plot(a)
plt.ylabel('Loss Percent')
plt.xlabel('Epochs')
plt.show()

pre_trained = keras.models.load_model("gradio_pix2pix.h5")

#pre_trained.summary()

#pre_trained.optimizer

#path2 = '/content/drive/MyDrive/ColabNotebooks/enhance/landscape.png'
#image = gray_imread(path2)
#image = saltpepperNoise(image)
#image = np.array(image).reshape(1,256,256,1)

#prediction = pre_trained(image,training=True)
#pre = prediction[0]
#pre = (pre+1)*127.5
#pre = np.uint8(pre)
#name = '/content/drive/MyDrive/ColabNotebooks/enhance/pre_trained.png'
#plt.imsave(name,pre)
#cv2.imshow(pre)

def result(Input):
    size0 = Input.shape[0]
    size1 = Input.shape[1]
    Input = cv2.resize(Input, (256,256), interpolation = cv2.INTER_AREA)
    Input = cv2.cvtColor(Input , cv2.COLOR_BGR2GRAY)
    Input = np.array(Input).reshape(1,256,256,1)
    prediction = pre_trained(Input,training=True)
    Input = prediction[0]
    Input = (Input+1)*127.5
    Input = np.uint8(Input)
    Input = cv2.resize(Input, (size1,size0), interpolation = cv2.INTER_AREA)
    return Input

#lst = cv2.imread('/content/drive/MyDrive/ColabNotebooks/enhance/low-sat.jpg')
#r = result(lst)
#cv2.imshow(r)

pip install gradio

import gradio as gr

iface = gr.Interface(fn=result, inputs=gr.inputs.Image(type="numpy",image_mode="RGB"), outputs=gr.outputs.Image( type="auto", label=None),theme="grass"
,allow_flagging="never",css=""" body {background-color: rgba(127,191,63,0.48)} """,title="Image Colorization")
iface.launch(debug='False')