Spaces:
Build error
Build error
File size: 7,701 Bytes
0e2fe1b 6fc9e96 0e2fe1b 3be0020 a5297b6 04e8f54 5bf17c8 3be0020 5bf17c8 3be0020 5bf17c8 49bd8dc 3be0020 04e8f54 7848c2f 5bf17c8 7848c2f 5bf17c8 7848c2f 5bf17c8 7848c2f 04e8f54 079d739 e8da5f2 eb8dafe 32b9d53 e8da5f2 78b7608 e8da5f2 3c58be5 eb8dafe e8da5f2 0e2fe1b f35256b 079d739 0e2fe1b f0d28c5 2e98884 f35256b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 |
import tensorflow as tf
import os
import pathlib
import time
import datetime
from matplotlib import pyplot as plt
import numpy as np
from cv2 import cv2
import math
def color_imread(path):
img = cv2.imread(path)
img = cv2.cvtColor(img , cv2.COLOR_BGR2RGB)
img = (img/127.5) - 1
img = img.astype(np.float32)
return img
def gray_imread(path):
img = cv2.imread(path)
img = cv2.cvtColor(img ,cv2.COLOR_BGR2GRAY)
img = img.astype(np.float32)
return img
def reshape(gray_img):
gray_img = np.asarray(gray_img)
gray_img = gray_img.reshape(256,256,1)
return gray_img
array_Gen_loss=[]
def histogram_graphic(img):
hist,bins = np.histogram(img.flatten(),256,[0,256])
cdf = hist.cumsum()
cdf_normalized = cdf * float(hist.max()) / cdf.max()
plt.plot(cdf_normalized, color = 'b')
plt.hist(img.flatten(),256,[0,256], color = 'r')
plt.xlim([0, 230])
plt.legend(('cdf','histogram'), loc = 'upper left')
plt.show()
def preprocessing(path):
img = cv2.imread(path)
img = np.asarray(img).reshape(256,256,3)
#print(img.shape)
#cv2.imshow(img)
#cv2.imwrite("/content/drive/MyDrive/ColabNotebooks/enhance/Before_hist_equalizer.png",img)
#Işık ayarı
hsv = cv2.cvtColor(img, cv2.COLOR_BGR2HSV) #hsv formatında gerekiyor
hue, sat, val = cv2.split(hsv)
mid = 0.5
mean = np.mean(val)
gamma = math.log(mid*255)/math.log(mean)
#print("Gamma:",gamma)
#Çıkan gamma değerine göre ters işlem uygulayacak
def image_colorfulness(image):
# split the image into its respective RGB components
(B, G, R) = cv2.split(image.astype("float"))
# compute rg = R - G
rg = np.absolute(R - G)
# compute yb = 0.5 * (R + G) - B
yb = np.absolute(0.5 * (R + G) - B)
# compute the mean and standard deviation of both `rg` and `yb`
(rbMean, rbStd) = (np.mean(rg), np.std(rg))
(ybMean, ybStd) = (np.mean(yb), np.std(yb))
# combine the mean and standard deviations
stdRoot = np.sqrt((rbStd ** 2) + (ybStd ** 2))
meanRoot = np.sqrt((rbMean ** 2) + (ybMean ** 2))
# derive the "colorfulness" metric and return it
return stdRoot + (0.3 * meanRoot) # sınırı 24
from PIL import Image, ImageEnhance
def add_saturation(path):
clr = cv2.imread(path)
value = image_colorfulness(clr)
print(value)
img = Image.open(path)
enhanced_obj = ImageEnhance.Color(img)
if value<30 : #renk doygunluğu iyi durumda çıkanları da bir miktar arttırmak için sınırı 30 yapıyoruz
enhanced_obj.enhance((30-value)*0.1 + 0.75).save("enhance/deneme_sat.jpg")
#add_saturation("/content/drive/MyDrive/ColabNotebooks/enhance/cikti2.jpeg")
def unsharp_mask(image, kernel_size=(5, 5), sigma=1.0, amount=1.0, threshold=0):
"""Return a sharpened version of the image, using an unsharp mask."""
blurred = cv2.GaussianBlur(image, kernel_size, sigma)
sharpened = float(amount + 1) * image - float(amount) * blurred
sharpened = np.maximum(sharpened, np.zeros(sharpened.shape))
sharpened = np.minimum(sharpened, 255 * np.ones(sharpened.shape))
sharpened = sharpened.round().astype(np.uint8)
if threshold > 0:
low_contrast_mask = np.absolute(image - blurred) < threshold
np.copyto(sharpened, image, where=low_contrast_mask)
return sharpened
def example(image,name):
sharpened_image = unsharp_mask(image)
cv2.imwrite(name, sharpened_image)
def ssim_psnr(pre,target):
ssim_res = ssim(pre,target)
psnr_res = psnr(pre,target)
ssim_results.append(ssim_res)
psnr_results.append(ssim_results)
def result(Input,Choice,Step):
if Choice=="Indoor-Coloring":
if Step == 1.0:
pre_trained = tf.keras.models.load_model("indoor_1.h5")
if Step == 2.0:
pre_trained = tf.keras.models.load_model("indoor_2.h5")
if Step == 3.0:
pre_trained = tf.keras.models.load_model("indoor_3.h5")
size0 = Input.shape[0]
size1 = Input.shape[1]
start = Input
Input = cv2.resize(Input, (256,256), interpolation = cv2.INTER_AREA)
Input = cv2.cvtColor(Input , cv2.COLOR_BGR2GRAY)
Input = np.array(Input).reshape(1,256,256,1)
prediction = pre_trained(Input,training=True)
Input = prediction[0]
Input = (Input+1)*127.5
Input = np.uint8(Input)
Input = cv2.resize(Input, (size1,size0), interpolation = cv2.INTER_AREA)
finish = Input
mse = np.mean((start - finish) ** 2)
MAX = np.iinfo(start.dtype).max
if mse == 0:
Psnr = 100
else:
Psnr = 20 * math.log10(MAX / math.sqrt(mse))
return Input,Psnr
if Choice=="Outdoor-Coloring":
if Step == 1.0:
pre_trained = tf.keras.models.load_model("outdoor_1.h5")
if Step == 2.0:
pre_trained = tf.keras.models.load_model("outdoor_2.h5")
if Step == 3.0:
pre_trained = tf.keras.models.load_model("outdoor_3.h5")
size0 = Input.shape[0]
size1 = Input.shape[1]
start = Input
Input = cv2.resize(Input, (256,256), interpolation = cv2.INTER_AREA)
Input = cv2.cvtColor(Input , cv2.COLOR_BGR2GRAY)
Input = np.array(Input).reshape(1,256,256,1)
prediction = pre_trained(Input,training=True)
Input = prediction[0]
Input = (Input+1)*127.5
Input = np.uint8(Input)
Input = cv2.resize(Input, (size1,size0), interpolation = cv2.INTER_AREA)
finish = Input
mse = np.mean((start - finish) ** 2)
MAX = np.iinfo(start.dtype).max
if mse == 0:
Psnr = 100
else:
Psnr = 20 * math.log10(MAX / math.sqrt(mse))
return Input,Psnr
if Choice =="Enhancement":
if Step == 1.0 or Step == 2.0 or Step == 3.0:
pre_trained2 = tf.keras.models.load_model("generatorLR-HR_300.h5")
size0 = Input.shape[0]
size1 = Input.shape[1]
Input = cv2.resize(Input, (256,256), interpolation = cv2.INTER_AREA)
Input = cv2.cvtColor(Input ,cv2.COLOR_BGR2RGB)
Input = (Input/127.5) - 1
Input = Input.astype(np.float32)
Input = np.array(Input).reshape(1,256,256,3)
prediction = pre_trained2(Input,training=True)
Input = prediction[0]
Input = (Input+1)*127.5
Input = np.uint8(Input)
Input = cv2.resize(Input, (size1,size0), interpolation = cv2.INTER_AREA)
Input = cv2.cvtColor(Input ,cv2.COLOR_BGR2RGB)
Psnr = 50
return Input, Psnr
#lst = cv2.imread('/content/drive/MyDrive/ColabNotebooks/enhance/low-sat.jpg')
#r = result(lst)
#cv2.imshow(r)
import gradio as gr
iface = gr.Interface(fn=result, inputs=[gr.inputs.Image(type="numpy",image_mode="RGB"),gr.inputs.Radio(["Indoor-Coloring","Outdoor-Coloring","Enhancement", "Face-Coloring","Repair"]),gr.inputs.Slider(minimum=1.0,maximum=3.0,default=3.0,step=1.0)], outputs=[gr.outputs.Image( type="auto", label="Output"),gr.outputs.Textbox(type="number",label="Psnr Between Input and Output")],theme="grass", live=True
,css=""" body {background-color: rgba(127,191,63,0.48)} """,title="Colorization and Enhancement of Old Images",article=""" <a href="https://docs.google.com/document/d/19k6dyR5x_hd1M0yoU8i49dlDWvFmtnBT/edit?usp=sharing&ouid=115743073712072785012&rtpof=true&sd=true" download="example.docx"><img src="https://img.icons8.com/external-itim2101-lineal-color-itim2101/64/000000/external-article-blogger-and-influencer-itim2101-lineal-color-itim2101-1.png" alt="Article"></a>""",examples=[["indoor.png","Indoor-Coloring",3.0],["indoor_10468.png","Indoor-Coloring",3.0],["outdoor_46.png","Outdoor-Coloring",3.0],["outdoor_1755.png","Outdoor-Coloring",3.0]])
iface.launch(debug="True",show_tips="True",inbrowser=True) |