Spaces:
Restarting
on
CPU Upgrade
Restarting
on
CPU Upgrade
File size: 3,318 Bytes
12efa10 7e61b6b f79393b 00e1096 eec2226 f79393b eec2226 7e61b6b ca48878 eec2226 7e61b6b bcbf716 f79393b 12efa10 28bc007 12efa10 28bc007 12efa10 28bc007 12efa10 28bc007 12efa10 28bc007 12efa10 92e74cb 12efa10 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 |
import json
import os
import pandas as pd
from src.display.formatting import has_no_nan_values, make_clickable_model
from src.display.utils import AutoEvalColumn, EvalQueueColumn
from src.leaderboard.read_evals import get_raw_eval_results
def get_leaderboard_df(results_path: str, requests_path: str, cols: list, benchmark_cols: list) -> pd.DataFrame:
"""Creates a dataframe from all the individual experiment results"""
raw_data = get_raw_eval_results(results_path, requests_path)
all_data_json = [v.to_dict() for v in raw_data]
df = pd.DataFrame.from_records(all_data_json)
if not df.empty:
df = df.sort_values(by=[AutoEvalColumn.average_score.name], ascending=False)
# filter out if any of the benchmarks have not been produced
df = df[has_no_nan_values(df, benchmark_cols)]
df.insert(0, "Rank", range(1, len(df) + 1))
##round any float column
for col in df.columns:
if df[col].dtype == "float64":
df[col] = df[col].round(2)
df["Benchmark Score (0-10)"] = df["Benchmark Score (0-10)"].astype(str)
print(df["Benchmark Score (0-10)"])
print("###############\n\n\n\n\n\n###############")
print(df)
print(df.info())
return df
else:
return pd.DataFrame(columns=cols)
def get_evaluation_queue_df(save_path: str, cols: list) -> list[pd.DataFrame]:
"""Creates the different dataframes for the evaluation queues requestes"""
entries = [entry for entry in os.listdir(save_path) if not entry.startswith(".")]
all_evals = []
for entry in entries:
if ".json" in entry:
file_path = os.path.join(save_path, entry)
with open(file_path) as fp:
data = json.load(fp)
data[EvalQueueColumn.model.name] = make_clickable_model(data["model"])
data[EvalQueueColumn.revision.name] = data.get("revision", "main")
all_evals.append(data)
elif os.path.isdir(f"{save_path}/{entry}"):
# this is a folder
sub_entries = [e for e in os.listdir(f"{save_path}/{entry}") if os.path.isfile(f"{save_path}/{entry}/{e}") ]#and not e.startswith(".")
print(f"Sub entries: {sub_entries}")
for sub_entry in sub_entries:
file_path = os.path.join(save_path, entry, sub_entry)
print(f"{file_path}")
with open(file_path) as fp:
data = json.load(fp)
data[EvalQueueColumn.model.name] = make_clickable_model(data["model"])
data[EvalQueueColumn.revision.name] = data.get("revision", "main")
all_evals.append(data)
pending_list = [e for e in all_evals if e["status"] in ["PENDING", "RERUN"]]
print(pending_list)
running_list = [e for e in all_evals if e["status"] == "RUNNING"]
finished_list = [e for e in all_evals if e["status"].startswith("FINISHED") or e["status"] == "PENDING_NEW_EVAL"]
df_pending = pd.DataFrame.from_records(pending_list, columns=cols)
df_running = pd.DataFrame.from_records(running_list, columns=cols)
df_finished = pd.DataFrame.from_records(finished_list, columns=cols)
return df_finished[cols], df_running[cols], df_pending[cols]
|