File size: 15,348 Bytes
5f735a0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
import os
os.environ["CUDA_VISIBLE_DEVICES"] = "0"  # 指定要使用的GPU设备编号
from transformers import pipeline
import argparse
import openai
import tiktoken
import torch
from scipy.spatial.distance import cosine
from transformers import AutoModel, AutoTokenizer
from argparse import Namespace
from langchain.chat_models import ChatOpenAI
import gradio as gr
import random
import time
from langchain.prompts.chat import (
    ChatPromptTemplate,
    SystemMessagePromptTemplate,
    AIMessagePromptTemplate,
    HumanMessagePromptTemplate,
)
from langchain.schema import (
    AIMessage,
    HumanMessage,
    SystemMessage
)
from text import Text

def download_models():
    # Import our models. The package will take care of downloading the models automatically
    model_args = Namespace(do_mlm=None, pooler_type="cls", temp=0.05, mlp_only_train=False,
                            init_embeddings_model=None)
    model = AutoModel.from_pretrained("silk-road/luotuo-bert", trust_remote_code=True, model_args=model_args)
    return model

# OPENAI_API_KEY = os.environ.get("OPENAI_API_KEY2")
# openai.api_key = 'sk-DfFyRKch'  # 在这里输入你的OpenAI API Token

# os.environ["OPENAI_API_KEY"] = openai.api_key

folder_name = "Suzumiya"
current_directory = os.getcwd()
new_directory = os.path.join(current_directory, folder_name)


pkl_path = './pkl/texts.pkl'
text_image_pkl_path='./pkl/text_image.pkl'
dict_path = "../characters/haruhi/text_image_dict.txt"
dict_text_pkl_path = './pkl/dict_text.pkl'

image_path = "../characters/haruhi/images"
model = download_models()
text = Text("../characters/haruhi/texts", text_image_pkl_path=text_image_pkl_path,
                dict_text_pkl_path=dict_text_pkl_path, model=model, num_steps=50, pkl_path=pkl_path,
                dict_path=dict_path, image_path=image_path)

if not os.path.exists(new_directory):
    os.makedirs(new_directory)
    print(f"文件夹 '{folder_name}' 创建成功!")
else:
    print(f"文件夹 '{folder_name}' 已经存在。")

enc = tiktoken.get_encoding("cl100k_base")


class Run:
    def __init__(self, **params):
        """
            * 命令行参数的接入
            * 台词folder,记录台词
            * system prompt存成txt文件,支持切换
            * 支持设定max_len_story 和max_len_history
            * 支持设定save_path
            * 实现一个colab脚本,可以clone转换后的项目并运行,方便其他用户体验
        """
        self.folder = params['folder']
        # self.system_prompt = params['system_prompt']
        with open(params['system_prompt'], 'r') as f:
                    self.system_prompt = f.read()
        self.max_len_story = params['max_len_story']
        self.max_len_history = params['max_len_history']
        self.save_path = params['save_path']
        self.titles, self.title_to_text = self.read_prompt_data()
        self.embeddings, self.embed_to_title = self.title_text_embedding(self.titles, self.title_to_text)
        # self.embeddings, self.embed_to_title = [], []
        # 一个封装 OpenAI 接口的函数,参数为 Prompt,返回对应结果

    def get_completion_from_messages(self, messages, model="gpt-3.5-turbo", temperature=0):
        response = openai.ChatCompletion.create(
            model=model,
            messages=messages,
            temperature=temperature,  # 控制模型输出的随机程度
        )
        #  print(str(response.choices[0].message))
        return response.choices[0].message["content"]

    def read_prompt_data(self):
        """
            read prompt-data for in-context-learning
        """
        titles = []
        title_to_text = {}
        for file in os.listdir(self.folder):
            if file.endswith('.txt'):
                title_name = file[:-4]
                titles.append(title_name)

                with open(os.path.join(self.folder, file), 'r') as f:
                    title_to_text[title_name] = f.read()

        return titles, title_to_text


    def get_embedding(self, text):
        tokenizer = AutoTokenizer.from_pretrained("silk-road/luotuo-bert")
        model = download_models()
        if len(text) > 512:
            text = text[:512]
        texts = [text]
        # Tokenize the text
        inputs = tokenizer(texts, padding=True, truncation=False, return_tensors="pt")
        # Extract the embeddings
        # Get the embeddings
        with torch.no_grad():
            embeddings = model(**inputs, output_hidden_states=True, return_dict=True, sent_emb=True).pooler_output
        return embeddings[0]

    def title_text_embedding(self, titles, title_to_text):
        """titles-text-embeddings"""

        embeddings = []
        embed_to_title = []

        for title in titles:
            text = title_to_text[title]

            # divide text with \n\n
            divided_texts = text.split('\n\n')

            for divided_text in divided_texts:
                embed = self.get_embedding(divided_text)
                embeddings.append(embed)
                embed_to_title.append(title)

        return embeddings, embed_to_title

    def get_cosine_similarity(self, embed1, embed2):
        return torch.nn.functional.cosine_similarity(embed1, embed2, dim=0)

    def retrieve_title(self, query_embed, embeddings, embed_to_title, k):
        # compute cosine similarity between query_embed and embeddings
        cosine_similarities = []
        for embed in embeddings:
            cosine_similarities.append(self.get_cosine_similarity(query_embed, embed))

        # sort cosine similarity
        sorted_cosine_similarities = sorted(cosine_similarities, reverse=True)

        top_k_index = []
        top_k_title = []

        for i in range(len(sorted_cosine_similarities)):
            current_title = embed_to_title[cosine_similarities.index(sorted_cosine_similarities[i])]
            if current_title not in top_k_title:
                top_k_title.append(current_title)
                top_k_index.append(cosine_similarities.index(sorted_cosine_similarities[i]))

            if len(top_k_title) == k:
                break

        return top_k_title

    def organize_story_with_maxlen(self, selected_sample):
        maxlen = self.max_len_story
        # title_to_text, _ = self.read_prompt_data()
        story = "凉宫春日的经典桥段如下:\n"

        count = 0

        final_selected = []
        print(selected_sample)
        for sample_topic in selected_sample:
            # find sample_answer in dictionary
            sample_story = self.title_to_text[sample_topic]

            sample_len = len(enc.encode(sample_story))
            # print(sample_topic, ' ' , sample_len)
            if sample_len + count > maxlen:
                break

            story += sample_story
            story += '\n'

            count += sample_len
            final_selected.append(sample_topic)

        return story, final_selected

    def organize_message(self, story, history_chat, history_response, new_query):
        messages = [{'role': 'system', 'content': self.system_prompt}, {'role': 'user', 'content': story}]

        n = len(history_chat)
        if n != len(history_response):
            print('warning, unmatched history_char length, clean and start new chat')
            # clean all
            history_chat = []
            history_response = []
            n = 0

        for i in range(n):
            messages.append({'role': 'user', 'content': history_chat[i]})
            messages.append({'role': 'user', 'content': history_response[i]})

        messages.append({'role': 'user', 'content': new_query})

        return messages

    def keep_tail(self, history_chat, history_response):
        max_len = self.max_len_history
        n = len(history_chat)
        if n == 0:
            return [], []

        if n != len(history_response):
            print('warning, unmatched history_char length, clean and start new chat')
            return [], []

        token_len = []
        for i in range(n):
            chat_len = len(enc.encode(history_chat[i]))
            res_len = len(enc.encode(history_response[i]))
            token_len.append(chat_len + res_len)

        keep_k = 1
        count = token_len[n - 1]

        for i in range(1, n):
            count += token_len[n - 1 - i]
            if count > max_len:
                break
            keep_k += 1

        return history_chat[-keep_k:], history_response[-keep_k:]

    def organize_message_langchain(self, story, history_chat, history_response, new_query):
        # messages =  [{'role':'system', 'content':SYSTEM_PROMPT}, {'role':'user', 'content':story}]

        messages = [
            SystemMessage(content=self.system_prompt),
            HumanMessage(content=story)
        ]

        n = len(history_chat)
        if n != len(history_response):
            print('warning, unmatched history_char length, clean and start new chat')
            # clean all
            history_chat = []
            history_response = []
            n = 0

        for i in range(n):
            messages.append(HumanMessage(content=history_chat[i]))
            messages.append(AIMessage(content=history_response[i]))

        # messages.append( {'role':'user', 'content':new_query })
        messages.append(HumanMessage(content=new_query))

        return messages

    def get_response(self, user_message, chat_history_tuple):

        history_chat = []
        history_response = []

        if len(chat_history_tuple) > 0:
            for cha, res in chat_history_tuple:
                history_chat.append(cha)
                history_response.append(res)

        history_chat, history_response = self.keep_tail(history_chat, history_response)

        print('history done')

        new_query = user_message
        query_embed = self.get_embedding(new_query)

        # print("1")
        # embeddings, embed_to_title = self.title_text_embedding(self.titles, self.title_to_text)

        print("2")
        selected_sample = self.retrieve_title(query_embed, self.embeddings, self.embed_to_title, 7)

        print("3")
        story, selected_sample = self.organize_story_with_maxlen(selected_sample)

        ## TODO: visualize seletected sample later
        print('当前辅助sample:', selected_sample)

        messages = self.organize_message_langchain(story, history_chat, history_response, new_query)
        chat = ChatOpenAI(temperature=0)
        return_msg = chat(messages)

        response = return_msg.content

        return response

    def save_response(self, chat_history_tuple):
        with open(f"{self.save_path}/conversation_{time.time()}.txt", "w") as file:
            for cha, res in chat_history_tuple:
                file.write(cha)
                file.write("\n---\n")
                file.write(res)
                file.write("\n---\n")

    def create_gradio(self):
        # from google.colab import drive
        # drive.mount(drive_path)
        with gr.Blocks() as demo:
            gr.Markdown(
                """
                ## Chat凉宫春日 ChatHaruhi
                此版本为测试版本,非正式版本,正式版本功能更多,敬请期待
                """
            )
            image_input = gr.Textbox(visible=False)
            japanese_input = gr.Textbox(visible=False)
            with gr.Row():
                chatbot = gr.Chatbot()
                image_output = gr.Image()
            role_name = gr.Textbox(label="角色名", placeholde="输入角色名")
            msg = gr.Textbox(label="输入")
            with gr.Row():
                clear = gr.Button("Clear")
                sub = gr.Button("Submit")
                image_button = gr.Button("给我一个图")
            japanese_output = gr.Textbox(interactive=False)
            

            def respond(role_name, user_message, chat_history):
                input_message = role_name + ':「' + user_message + '」'
                bot_message = self.get_response(input_message, chat_history)
                chat_history.append((input_message, bot_message))
                self.save_response(chat_history)
                # time.sleep(1)
                jp_text = pipe(f'<-zh2ja-> {bot_message}')[0]['translation_text']
                return "" , chat_history, bot_message, jp_text

            clear.click(lambda: None, None, chatbot, queue=False)
            msg.submit(respond, [role_name, msg, chatbot], [msg, chatbot, image_input, japanese_output])
            sub.click(fn=respond, inputs=[role_name, msg, chatbot], outputs=[msg, chatbot, image_input, japanese_output])
            # with gr.Tab("text_to_text"):
            #     text_input = gr.Textbox()
            #     text_output = gr.Textbox()
            #     text_button = gr.Button('begin')

            # text_button.click(text.text_to_text, inputs=text_input, outputs=text_output)
            


            # with gr.Tab("text_to_iamge"):
                # with gr.Row():
                    # image_input = gr.Textbox()
                    # image_output = gr.Image()
            # image_button = gr.Button("给我一个图")
        
            image_button.click(text.text_to_image, inputs=image_input, outputs=image_output)

        demo.launch(debug=True,share=True)


if __name__ == '__main__':
    parser = argparse.ArgumentParser(description="-----[Chat凉宫春日]-----")
    parser.add_argument("--folder", default="../characters/haruhi/texts", help="text folder")
    parser.add_argument("--system_prompt", default="../characters/haruhi/system_prompt.txt", help="store system_prompt")
    parser.add_argument("--max_len_story", default=1500, type=int)
    parser.add_argument("--max_len_history", default=1200, type=int)
    # parser.add_argument("--save_path", default="/content/drive/MyDrive/GPTData/Haruhi-Lulu/")
    parser.add_argument("--save_path", default=os.getcwd()+"/Suzumiya")
    options = parser.parse_args()
    params = {
        "folder": options.folder,
        "system_prompt": options.system_prompt,
        "max_len_story": options.max_len_story,
        "max_len_history": options.max_len_history,
        "save_path": options.save_path
    }
    pipe = pipeline(model="engmatic-earth/mt5-zh-ja-en-trimmed-fine-tuned-v1", device=0,max_length=120)
    run = Run(**params)
    run.create_gradio()

    
    # history_chat = []
    # history_response = []
    # chat_timer = 5
    # new_query = '鲁鲁:你好我是新同学鲁鲁'

    # query_embed = run.get_embedding(new_query)
    # titles, title_to_text = run.read_prompt_data()
    # embeddings, embed_to_title = run.title_text_embedding(titles, title_to_text)
    # selected_sample = run.retrieve_title(query_embed, embeddings, embed_to_title, 7)

    # print('限制长度之前:', selected_sample)

    # story, selected_sample = run.organize_story_with_maxlen(selected_sample)

    # print('当前辅助sample:', selected_sample)

    # messages = run.organize_message(story, history_chat, history_response, new_query)

    # response = run.get_completion_from_messages(messages)

    # print(response)

    # history_chat.append(new_query)
    # history_response.append(response)

    # history_chat, history_response = run.keep_tail(history_chat, history_response)
    # print(history_chat, history_response)