Spaces:
Runtime error
Runtime error
File size: 22,322 Bytes
17dd4b5 848367f 17dd4b5 848367f 17dd4b5 194b558 17dd4b5 fe793b9 17dd4b5 848367f fe793b9 848367f 17dd4b5 1b4a1ee 17dd4b5 848367f 17dd4b5 194b558 17dd4b5 194b558 17dd4b5 194b558 17dd4b5 194b558 17dd4b5 194b558 17dd4b5 848367f 194b558 17dd4b5 848367f 194b558 17dd4b5 848367f 17dd4b5 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 |
import gradio as gr
import torch
from transformers import CLIPTextModel, CLIPTokenizer
from diffusers import AutoencoderKL, LMSDiscreteScheduler
from my_model import unet_2d_condition
import json
import numpy as np
from PIL import Image, ImageDraw, ImageFont
from functools import partial
import math
from utils import compute_ca_loss
from gradio import processing_utils
from typing import Optional
import spaces
import warnings
import sys
sys.tracebacklimit = 0
class Blocks(gr.Blocks):
def __init__(
self,
theme: str = "default",
analytics_enabled: Optional[bool] = None,
mode: str = "blocks",
title: str = "Gradio",
css: Optional[str] = None,
**kwargs,
):
self.extra_configs = {
'thumbnail': kwargs.pop('thumbnail', ''),
'url': kwargs.pop('url', 'https://gradio.app/'),
'creator': kwargs.pop('creator', '@teamGradio'),
}
super(Blocks, self).__init__(theme, analytics_enabled, mode, title, css, **kwargs)
warnings.filterwarnings("ignore")
def get_config_file(self):
config = super(Blocks, self).get_config_file()
for k, v in self.extra_configs.items():
config[k] = v
return config
def draw_box(boxes=[], texts=[], img=None):
if len(boxes) == 0 and img is None:
return None
if img is None:
img = Image.new('RGB', (512, 512), (255, 255, 255))
colors = ["red", "olive", "blue", "green", "orange", "brown", "cyan", "purple"]
draw = ImageDraw.Draw(img)
font = ImageFont.truetype("DejaVuSansMono.ttf", size=18)
print(boxes)
for bid, box in enumerate(boxes):
draw.rectangle([box[0], box[1], box[2], box[3]], outline=colors[bid % len(colors)], width=4)
anno_text = texts[bid]
draw.rectangle(
[box[0], box[3] - int(font.size * 1.2), box[0] + int((len(anno_text) + 0.8) * font.size * 0.6), box[3]],
outline=colors[bid % len(colors)], fill=colors[bid % len(colors)], width=4)
draw.text([box[0] + int(font.size * 0.2), box[3] - int(font.size * 1.2)], anno_text, font=font,
fill=(255, 255, 255))
return img
def get_concat(ims):
if len(ims) == 1:
n_col = 1
else:
n_col = 2
n_row = math.ceil(len(ims) / 2)
dst = Image.new('RGB', (ims[0].width * n_col, ims[0].height * n_row), color="white")
for i, im in enumerate(ims):
row_id = i // n_col
col_id = i % n_col
dst.paste(im, (im.width * col_id, im.height * row_id))
return dst
def binarize(x):
return (x != 0).astype('uint8') * 255
def sized_center_crop(img, cropx, cropy):
y, x = img.shape[:2]
startx = x // 2 - (cropx // 2)
starty = y // 2 - (cropy // 2)
return img[starty:starty + cropy, startx:startx + cropx]
def sized_center_fill(img, fill, cropx, cropy):
y, x = img.shape[:2]
startx = x // 2 - (cropx // 2)
starty = y // 2 - (cropy // 2)
img[starty:starty + cropy, startx:startx + cropx] = fill
return img
def sized_center_mask(img, cropx, cropy):
y, x = img.shape[:2]
startx = x // 2 - (cropx // 2)
starty = y // 2 - (cropy // 2)
center_region = img[starty:starty + cropy, startx:startx + cropx].copy()
img = (img * 0.2).astype('uint8')
img[starty:starty + cropy, startx:startx + cropx] = center_region
return img
def center_crop(img, HW=None, tgt_size=(512, 512)):
if HW is None:
H, W = img.shape[:2]
HW = min(H, W)
img = sized_center_crop(img, HW, HW)
img = Image.fromarray(img)
img = img.resize(tgt_size)
return np.array(img)
def draw(input, grounding_texts, new_image_trigger, state):
if type(input) == dict:
# import pdb; pdb.set_trace()
# image = input['composite']
mask = input['composite']
else:
mask = input
if mask.ndim == 3:
mask = 255 - mask[..., 0]
image_scale = 1.0
mask = binarize(mask)
if type(mask) != np.ndarray:
mask = np.array(mask)
if mask.sum() == 0:
state = {}
image = None
if 'boxes' not in state:
state['boxes'] = []
if 'masks' not in state or len(state['masks']) == 0:
state['masks'] = []
last_mask = np.zeros_like(mask)
else:
last_mask = state['masks'][-1]
if type(mask) == np.ndarray and mask.size > 1:
diff_mask = mask - last_mask
else:
diff_mask = np.zeros([])
if diff_mask.sum() > 0:
x1x2 = np.where(diff_mask.max(0) != 0)[0]
y1y2 = np.where(diff_mask.max(1) != 0)[0]
y1, y2 = y1y2.min(), y1y2.max()
x1, x2 = x1x2.min(), x1x2.max()
if (x2 - x1 > 5) and (y2 - y1 > 5):
state['masks'].append(mask.copy())
state['boxes'].append((x1, y1, x2, y2))
grounding_texts = [x.strip() for x in grounding_texts.split(';')]
grounding_texts = [x for x in grounding_texts if len(x) > 0]
if len(grounding_texts) < len(state['boxes']):
grounding_texts += [f'Obj. {bid + 1}' for bid in range(len(grounding_texts), len(state['boxes']))]
box_image = draw_box(state['boxes'], grounding_texts, image)
return [box_image, new_image_trigger, image_scale, state]
def clear(sketch_pad_trigger, batch_size, state, switch_task=False):
sketch_pad_trigger = sketch_pad_trigger + 1
blank_samples = batch_size % 2 if batch_size > 1 else 0
out_images = [None]
# state = {}
return [None, sketch_pad_trigger, None, 1.0] + out_images + [{}]
def main():
css = """
#img2img_image, #img2img_image > .fixed-height, #img2img_image > .fixed-height > div, #img2img_image > .fixed-height > div > img
{
height: var(--height) !important;
max-height: var(--height) !important;
min-height: var(--height) !important;
}
#paper-info a {
color:#008AD7;
text-decoration: none;
}
#paper-info a:hover {
cursor: pointer;
text-decoration: none;
}
.tooltip {
color: #555;
position: relative;
display: inline-block;
cursor: pointer;
}
.tooltip .tooltiptext {
visibility: hidden;
width: 400px;
background-color: #555;
color: #fff;
text-align: center;
padding: 5px;
border-radius: 5px;
position: absolute;
z-index: 1; /* Set z-index to 1 */
left: 10px;
top: 100%;
opacity: 0;
transition: opacity 0.3s;
}
.tooltip:hover .tooltiptext {
visibility: visible;
opacity: 1;
z-index: 9999; /* Set a high z-index value when hovering */
}
"""
rescale_js = """
function(x) {
const root = document.querySelector('gradio-app').shadowRoot || document.querySelector('gradio-app');
let image_scale = parseFloat(root.querySelector('#image_scale input').value) || 1.0;
const image_width = root.querySelector('#img2img_image').clientWidth;
const target_height = parseInt(image_width * image_scale);
document.body.style.setProperty('--height', `${target_height}px`);
root.querySelectorAll('button.justify-center.rounded')[0].style.display='none';
root.querySelectorAll('button.justify-center.rounded')[1].style.display='none';
return x;
}
"""
with open('./conf/unet/config.json') as f:
unet_config = json.load(f)
unet = unet_2d_condition.UNet2DConditionModel(**unet_config).from_pretrained('runwayml/stable-diffusion-v1-5',
subfolder="unet")
tokenizer = CLIPTokenizer.from_pretrained("runwayml/stable-diffusion-v1-5", subfolder="tokenizer")
text_encoder = CLIPTextModel.from_pretrained("runwayml/stable-diffusion-v1-5", subfolder="text_encoder")
vae = AutoencoderKL.from_pretrained("runwayml/stable-diffusion-v1-5", subfolder="vae")
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
unet.to(device)
text_encoder.to(device)
vae.to(device)
def generate(unet, vae, tokenizer, text_encoder, language_instruction, grounding_texts, sketch_pad,
loss_threshold, guidance_scale, batch_size, rand_seed, max_step, loss_scale, max_iter,
state):
if 'boxes' not in state:
state['boxes'] = []
boxes = state['boxes']
grounding_texts = [x.strip() for x in grounding_texts.split(';')]
# assert len(boxes) == len(grounding_texts)
if len(boxes) != len(grounding_texts):
if len(boxes) < len(grounding_texts):
raise ValueError("""The number of boxes should be equal to the number of grounding objects.
Number of boxes drawn: {}, number of grounding tokens: {}.
Please draw boxes accordingly on the sketch pad.""".format(len(boxes), len(grounding_texts)))
grounding_texts = grounding_texts + [""] * (len(boxes) - len(grounding_texts))
boxes = (np.asarray(boxes) / 512).tolist()
boxes = [[box] for box in boxes]
grounding_instruction = json.dumps({obj: box for obj, box in zip(grounding_texts, boxes)})
language_instruction_list = language_instruction.strip('.').split(' ')
object_positions = []
for obj in grounding_texts:
obj_position = []
for word in obj.split(' '):
obj_first_index = language_instruction_list.index(word) + 1
obj_position.append(obj_first_index)
object_positions.append(obj_position)
device = 'cuda' if torch.cuda.is_available() else 'cpu'
gen_images = inference(device, unet, vae, tokenizer, text_encoder, language_instruction, boxes,
object_positions, batch_size, loss_scale, loss_threshold, max_iter, max_step, rand_seed,
guidance_scale)
blank_samples = batch_size % 2 if batch_size > 1 else 0
gen_images = [x for i, x in enumerate(gen_images)] \
+ [_ for _ in range(blank_samples)] \
+ [_ for _ in range(4 - batch_size - blank_samples)]
return gen_images + [state]
'''
inference model
'''
@spaces.GPU(duration=180)
def inference(device, unet, vae, tokenizer, text_encoder, prompt, bboxes, object_positions, batch_size, loss_scale,
loss_threshold, max_iter, max_index_step, rand_seed, guidance_scale):
uncond_input = tokenizer(
[""] * 1, padding="max_length", max_length=tokenizer.model_max_length, return_tensors="pt"
)
uncond_embeddings = text_encoder(uncond_input.input_ids.to(device))[0]
input_ids = tokenizer(
prompt,
padding="max_length",
truncation=True,
max_length=tokenizer.model_max_length,
return_tensors="pt",
).input_ids[0].unsqueeze(0).to(device)
# text_embeddings = text_encoder(input_ids)[0]
text_embeddings = torch.cat([uncond_embeddings, text_encoder(input_ids)[0]])
# text_embeddings[1, 1, :] = text_embeddings[1, 2, :]
generator = torch.manual_seed(rand_seed) # Seed generator to create the inital latent noise
latents = torch.randn(
(batch_size, 4, 64, 64),
generator=generator,
).to(device)
noise_scheduler = LMSDiscreteScheduler(beta_start=0.00085, beta_end=0.012, beta_schedule="scaled_linear",
num_train_timesteps=1000)
# generator = torch.Generator("cuda").manual_seed(1024)
noise_scheduler.set_timesteps(51)
latents = latents * noise_scheduler.init_noise_sigma
loss = torch.tensor(10000)
for index, t in enumerate(noise_scheduler.timesteps):
iteration = 0
while loss.item() / loss_scale > loss_threshold and iteration < max_iter and index < max_index_step:
latents = latents.requires_grad_(True)
# latent_model_input = torch.cat([latents] * 2)
latent_model_input = latents
latent_model_input = noise_scheduler.scale_model_input(latent_model_input, t)
noise_pred, attn_map_integrated_up, attn_map_integrated_mid, attn_map_integrated_down = \
unet(latent_model_input, t, encoder_hidden_states=text_encoder(input_ids)[0])
# update latents with guidence from gaussian blob
loss = compute_ca_loss(attn_map_integrated_mid, attn_map_integrated_up, bboxes=bboxes,
object_positions=object_positions) * loss_scale
print(loss.item() / loss_scale)
grad_cond = torch.autograd.grad(loss.requires_grad_(True), [latents])[0]
latents = latents - grad_cond * noise_scheduler.sigmas[index] ** 2
iteration += 1
torch.cuda.empty_cache()
torch.cuda.empty_cache()
with torch.no_grad():
latent_model_input = torch.cat([latents] * 2)
latent_model_input = noise_scheduler.scale_model_input(latent_model_input, t)
noise_pred, attn_map_integrated_up, attn_map_integrated_mid, attn_map_integrated_down = \
unet(latent_model_input, t, encoder_hidden_states=text_embeddings)
noise_pred = noise_pred.sample
# perform classifier-free guidance
noise_pred_uncond, noise_pred_text = noise_pred.chunk(2)
noise_pred = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond)
latents = noise_scheduler.step(noise_pred, t, latents).prev_sample
torch.cuda.empty_cache()
# Decode image
with torch.no_grad():
# print("decode image")
latents = 1 / 0.18215 * latents
image = vae.decode(latents).sample
image = (image / 2 + 0.5).clamp(0, 1)
image = image.detach().cpu().permute(0, 2, 3, 1).numpy()
images = (image * 255).round().astype("uint8")
pil_images = [Image.fromarray(image) for image in images]
return pil_images
with Blocks(
css=css,
analytics_enabled=False,
title="Layout-Guidance demo",
) as demo:
description = """<p style="text-align: center; font-weight: bold;">
<span style="font-size: 28px">Layout Guidance</span>
<br>
<span style="font-size: 18px" id="paper-info">
[<a href=" " target="_blank">Project Page</a>]
[<a href=" " target="_blank">Paper</a>]
[<a href=" " target="_blank">GitHub</a>]
</span>
</p>
"""
gr.HTML(description)
with gr.Column():
language_instruction = gr.Textbox(
label="Text Prompt",
)
grounding_instruction = gr.Textbox(
label="Grounding instruction (Separated by semicolon)",
)
sketch_pad_trigger = gr.Number(value=0, visible=False)
sketch_pad_resize_trigger = gr.Number(value=0, visible=False)
init_white_trigger = gr.Number(value=0, visible=False)
image_scale = gr.Number(value=0, elem_id="image_scale", visible=False)
new_image_trigger = gr.Number(value=0, visible=False)
with gr.Row():
sketch_pad = gr.Paint(label="Sketch Pad", container=False, layers=False, scale=1, elem_id="img2img_image", canvas_size=(512,512))
out_imagebox = gr.Image(type="pil", label="Parsed Sketch Pad")
out_gen_1 = gr.Image(type="pil", visible=True, label="Generated Image")
with gr.Row():
clear_btn = gr.Button(value='Clear')
gen_btn = gr.Button(value='Generate')
with gr.Accordion("Advanced Options", open=False):
with gr.Column():
description = """<div class="tooltip">Loss Scale Factor ⓘ
<span class="tooltiptext">The scale factor of the backward guidance loss. The larger it is, the better control we get while it sometimes losses fidelity. </span>
</div>
<div class="tooltip">Guidance Scale ⓘ
<span class="tooltiptext">The scale factor of classifier-free guidance. </span>
</div>
<div class="tooltip" >Max Iteration per Step ⓘ
<span class="tooltiptext">The max iterations of backward guidance in each diffusion inference process.</span>
</div>
<div class="tooltip" >Loss Threshold ⓘ
<span class="tooltiptext">The threshold of loss. If the loss computed by cross-attention map is smaller then the threshold, the backward guidance is stopped. </span>
</div>
<div class="tooltip" >Max Step of Backward Guidance ⓘ
<span class="tooltiptext">The max steps of backward guidance in diffusion inference process.</span>
</div>
"""
gr.HTML(description)
Loss_scale = gr.Slider(minimum=0, maximum=500, step=5, value=30,label="Loss Scale Factor")
guidance_scale = gr.Slider(minimum=0, maximum=50, step=0.5, value=7.5, label="Guidance Scale")
batch_size = gr.Slider(minimum=1, maximum=4, step=1, value=1, label="Number of Samples", visible=False)
max_iter = gr.Slider(minimum=0, maximum=10, step=1, value=5, label="Max Iteration per Step")
loss_threshold = gr.Slider(minimum=0, maximum=1, step=0.1, value=0.2, label="Loss Threshold")
max_step = gr.Slider(minimum=0, maximum=50, step=1, value=10, label="Max Step of Backward Guidance")
rand_seed = gr.Slider(minimum=0, maximum=1000, step=1, value=445, label="Random Seed")
state = gr.State({})
class Controller:
def __init__(self):
self.calls = 0
self.tracks = 0
self.resizes = 0
self.scales = 0
def init_white(self, init_white_trigger):
self.calls += 1
return np.ones((512, 512), dtype='uint8') * 255, 1.0, init_white_trigger + 1
def change_n_samples(self, n_samples):
blank_samples = n_samples % 2 if n_samples > 1 else 0
return [gr.Image.update(visible=True) for _ in range(n_samples + blank_samples)] \
+ [gr.Image.update(visible=False) for _ in range(4 - n_samples - blank_samples)]
controller = Controller()
demo.load(
lambda x: x + 1,
inputs=sketch_pad_trigger,
outputs=sketch_pad_trigger,
queue=False)
sketch_pad.change(
draw,
inputs=[sketch_pad, grounding_instruction, sketch_pad_resize_trigger, state],
outputs=[out_imagebox, sketch_pad_resize_trigger, image_scale, state],
concurrency_limit=1,
queue=False,
)
grounding_instruction.change(
draw,
inputs=[sketch_pad, grounding_instruction, sketch_pad_resize_trigger, state],
outputs=[out_imagebox, sketch_pad_resize_trigger, image_scale, state],
concurrency_limit=1,
queue=False,
)
clear_btn.click(
clear,
inputs=[sketch_pad_trigger, sketch_pad_trigger, batch_size, state],
outputs=[sketch_pad, sketch_pad_trigger, out_imagebox, image_scale, out_gen_1, state],
concurrency_limit=1,
queue=False)
sketch_pad_trigger.change(
controller.init_white,
inputs=[init_white_trigger],
outputs=[sketch_pad, image_scale, init_white_trigger],
concurrency_limit=1,
queue=False)
gen_btn.click(
fn=partial(generate, unet, vae, tokenizer, text_encoder),
inputs=[
language_instruction, grounding_instruction, sketch_pad,
loss_threshold, guidance_scale, batch_size, rand_seed,
max_step,
Loss_scale, max_iter,
state,
],
outputs=[out_gen_1, state],
concurrency_limit=1,
queue=True
)
sketch_pad_resize_trigger.change(
None,
None,
sketch_pad_resize_trigger,
js=rescale_js,
concurrency_limit=1,
queue=False)
init_white_trigger.change(
None,
None,
init_white_trigger,
js=rescale_js,
concurrency_limit=1,
queue=False)
with gr.Column():
gr.Examples(
examples=[
[
# "images/input.png",
"A hello kitty toy is playing with a purple ball.",
"hello kitty;ball",
"images/hello_kitty_results.png"
],
],
inputs=[language_instruction, grounding_instruction, out_gen_1],
outputs=None,
fn=None,
cache_examples=False,
)
description = """<p> The source codes of the demo are modified based on the <a href="https://huggingface.co/spaces/gligen/demo/tree/main">GlIGen</a>. Thanks! </p>"""
gr.HTML(description)
demo.queue(api_open=False)
demo.launch(share=False, show_api=False, show_error=True)
if __name__ == '__main__':
main() |