File size: 22,322 Bytes
17dd4b5
 
 
 
 
 
 
 
 
 
 
 
 
848367f
17dd4b5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
848367f
 
 
17dd4b5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
194b558
 
17dd4b5
fe793b9
17dd4b5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
848367f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
fe793b9
 
 
848367f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
17dd4b5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1b4a1ee
17dd4b5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
848367f
17dd4b5
 
 
194b558
17dd4b5
 
 
 
 
 
194b558
17dd4b5
 
 
 
 
 
194b558
17dd4b5
 
 
 
 
 
194b558
17dd4b5
 
 
 
 
 
 
 
 
 
 
 
194b558
17dd4b5
 
 
 
 
 
848367f
194b558
17dd4b5
 
 
 
 
848367f
194b558
17dd4b5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
848367f
17dd4b5
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
import gradio as gr
import torch
from transformers import CLIPTextModel, CLIPTokenizer
from diffusers import AutoencoderKL, LMSDiscreteScheduler
from my_model import unet_2d_condition
import json
import numpy as np
from PIL import Image, ImageDraw, ImageFont
from functools import partial
import math
from utils import compute_ca_loss
from gradio import processing_utils
from typing import Optional
import spaces
import warnings

import sys

sys.tracebacklimit = 0

class Blocks(gr.Blocks):

    def __init__(
            self,
            theme: str = "default",
            analytics_enabled: Optional[bool] = None,
            mode: str = "blocks",
            title: str = "Gradio",
            css: Optional[str] = None,
            **kwargs,
    ):
        self.extra_configs = {
            'thumbnail': kwargs.pop('thumbnail', ''),
            'url': kwargs.pop('url', 'https://gradio.app/'),
            'creator': kwargs.pop('creator', '@teamGradio'),
        }

        super(Blocks, self).__init__(theme, analytics_enabled, mode, title, css, **kwargs)
        warnings.filterwarnings("ignore")

    def get_config_file(self):
        config = super(Blocks, self).get_config_file()

        for k, v in self.extra_configs.items():
            config[k] = v

        return config


def draw_box(boxes=[], texts=[], img=None):
    if len(boxes) == 0 and img is None:
        return None

    if img is None:
        img = Image.new('RGB', (512, 512), (255, 255, 255))
    colors = ["red", "olive", "blue", "green", "orange", "brown", "cyan", "purple"]
    draw = ImageDraw.Draw(img)
    font = ImageFont.truetype("DejaVuSansMono.ttf", size=18)
    print(boxes)
    for bid, box in enumerate(boxes):
        draw.rectangle([box[0], box[1], box[2], box[3]], outline=colors[bid % len(colors)], width=4)
        anno_text = texts[bid]
        draw.rectangle(
            [box[0], box[3] - int(font.size * 1.2), box[0] + int((len(anno_text) + 0.8) * font.size * 0.6), box[3]],
            outline=colors[bid % len(colors)], fill=colors[bid % len(colors)], width=4)
        draw.text([box[0] + int(font.size * 0.2), box[3] - int(font.size * 1.2)], anno_text, font=font,
                  fill=(255, 255, 255))
    return img



def get_concat(ims):
    if len(ims) == 1:
        n_col = 1
    else:
        n_col = 2
    n_row = math.ceil(len(ims) / 2)
    dst = Image.new('RGB', (ims[0].width * n_col, ims[0].height * n_row), color="white")
    for i, im in enumerate(ims):
        row_id = i // n_col
        col_id = i % n_col
        dst.paste(im, (im.width * col_id, im.height * row_id))
    return dst




def binarize(x):
    return (x != 0).astype('uint8') * 255


def sized_center_crop(img, cropx, cropy):
    y, x = img.shape[:2]
    startx = x // 2 - (cropx // 2)
    starty = y // 2 - (cropy // 2)
    return img[starty:starty + cropy, startx:startx + cropx]


def sized_center_fill(img, fill, cropx, cropy):
    y, x = img.shape[:2]
    startx = x // 2 - (cropx // 2)
    starty = y // 2 - (cropy // 2)
    img[starty:starty + cropy, startx:startx + cropx] = fill
    return img


def sized_center_mask(img, cropx, cropy):
    y, x = img.shape[:2]
    startx = x // 2 - (cropx // 2)
    starty = y // 2 - (cropy // 2)
    center_region = img[starty:starty + cropy, startx:startx + cropx].copy()
    img = (img * 0.2).astype('uint8')
    img[starty:starty + cropy, startx:startx + cropx] = center_region
    return img


def center_crop(img, HW=None, tgt_size=(512, 512)):
    if HW is None:
        H, W = img.shape[:2]
        HW = min(H, W)
    img = sized_center_crop(img, HW, HW)
    img = Image.fromarray(img)
    img = img.resize(tgt_size)
    return np.array(img)


def draw(input, grounding_texts, new_image_trigger, state):
    if type(input) == dict:
        # import pdb; pdb.set_trace()
        # image = input['composite']
        mask = input['composite']
    else:
        mask = input
    if mask.ndim == 3:
        mask = 255 - mask[..., 0]

    image_scale = 1.0

    mask = binarize(mask)

    if type(mask) != np.ndarray:
        mask = np.array(mask)

    if mask.sum() == 0:
        state = {}

    image = None

    if 'boxes' not in state:
        state['boxes'] = []

    if 'masks' not in state or len(state['masks']) == 0:
        state['masks'] = []
        last_mask = np.zeros_like(mask)
    else:
        last_mask = state['masks'][-1]

    if type(mask) == np.ndarray and mask.size > 1:
        diff_mask = mask - last_mask
    else:
        diff_mask = np.zeros([])

    if diff_mask.sum() > 0:
        x1x2 = np.where(diff_mask.max(0) != 0)[0]
        y1y2 = np.where(diff_mask.max(1) != 0)[0]
        y1, y2 = y1y2.min(), y1y2.max()
        x1, x2 = x1x2.min(), x1x2.max()

        if (x2 - x1 > 5) and (y2 - y1 > 5):
            state['masks'].append(mask.copy())
            state['boxes'].append((x1, y1, x2, y2))

    grounding_texts = [x.strip() for x in grounding_texts.split(';')]
    grounding_texts = [x for x in grounding_texts if len(x) > 0]
    if len(grounding_texts) < len(state['boxes']):
        grounding_texts += [f'Obj. {bid + 1}' for bid in range(len(grounding_texts), len(state['boxes']))]
    box_image = draw_box(state['boxes'], grounding_texts, image)

    return [box_image, new_image_trigger, image_scale, state]


def clear(sketch_pad_trigger, batch_size, state, switch_task=False):
    sketch_pad_trigger = sketch_pad_trigger + 1
    blank_samples = batch_size % 2 if batch_size > 1 else 0
    out_images = [None]
    # state = {}
    return [None, sketch_pad_trigger, None, 1.0] + out_images + [{}]


def main():

    css = """
    #img2img_image, #img2img_image > .fixed-height, #img2img_image > .fixed-height > div, #img2img_image > .fixed-height > div > img
    {
        height: var(--height) !important;
        max-height: var(--height) !important;
        min-height: var(--height) !important;
    }
    #paper-info a {
        color:#008AD7;
        text-decoration: none;
    }
    #paper-info a:hover {
        cursor: pointer;
        text-decoration: none;
    }

    .tooltip {
        color: #555;
        position: relative;
        display: inline-block;
        cursor: pointer;
    }

    .tooltip .tooltiptext {
        visibility: hidden;
        width: 400px;
        background-color: #555;
        color: #fff;
        text-align: center;
        padding: 5px;
        border-radius: 5px;
        position: absolute;
        z-index: 1; /* Set z-index to 1 */
        left: 10px;
        top: 100%;
        opacity: 0;
        transition: opacity 0.3s;
    }

    .tooltip:hover .tooltiptext {
        visibility: visible;
        opacity: 1;
        z-index: 9999; /* Set a high z-index value when hovering */
    }


    """

    rescale_js = """
    function(x) {
        const root = document.querySelector('gradio-app').shadowRoot || document.querySelector('gradio-app');
        let image_scale = parseFloat(root.querySelector('#image_scale input').value) || 1.0;
        const image_width = root.querySelector('#img2img_image').clientWidth;
        const target_height = parseInt(image_width * image_scale);
        document.body.style.setProperty('--height', `${target_height}px`);
        root.querySelectorAll('button.justify-center.rounded')[0].style.display='none';
        root.querySelectorAll('button.justify-center.rounded')[1].style.display='none';
        return x;
    }
    """
    with open('./conf/unet/config.json') as f:
        unet_config = json.load(f)

    unet = unet_2d_condition.UNet2DConditionModel(**unet_config).from_pretrained('runwayml/stable-diffusion-v1-5',
                                                                                 subfolder="unet")
    tokenizer = CLIPTokenizer.from_pretrained("runwayml/stable-diffusion-v1-5", subfolder="tokenizer")
    text_encoder = CLIPTextModel.from_pretrained("runwayml/stable-diffusion-v1-5", subfolder="text_encoder")
    vae = AutoencoderKL.from_pretrained("runwayml/stable-diffusion-v1-5", subfolder="vae")
    device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
    unet.to(device)
    text_encoder.to(device)
    vae.to(device)

    def generate(unet, vae, tokenizer, text_encoder, language_instruction, grounding_texts, sketch_pad,
                 loss_threshold, guidance_scale, batch_size, rand_seed, max_step, loss_scale, max_iter,
                 state):
        if 'boxes' not in state:
            state['boxes'] = []
        boxes = state['boxes']
        grounding_texts = [x.strip() for x in grounding_texts.split(';')]
        # assert len(boxes) == len(grounding_texts)
        if len(boxes) != len(grounding_texts):
            if len(boxes) < len(grounding_texts):
                raise ValueError("""The number of boxes should be equal to the number of grounding objects.
    Number of boxes drawn: {}, number of grounding tokens: {}.
    Please draw boxes accordingly on the sketch pad.""".format(len(boxes), len(grounding_texts)))
            grounding_texts = grounding_texts + [""] * (len(boxes) - len(grounding_texts))

        boxes = (np.asarray(boxes) / 512).tolist()
        boxes = [[box] for box in boxes]
        grounding_instruction = json.dumps({obj: box for obj, box in zip(grounding_texts, boxes)})
        language_instruction_list = language_instruction.strip('.').split(' ')
        object_positions = []
        for obj in grounding_texts:
            obj_position = []
            for word in obj.split(' '):
                obj_first_index = language_instruction_list.index(word) + 1
                obj_position.append(obj_first_index)
            object_positions.append(obj_position)
        device = 'cuda' if torch.cuda.is_available() else 'cpu'

        gen_images = inference(device, unet, vae, tokenizer, text_encoder, language_instruction, boxes,
                               object_positions, batch_size, loss_scale, loss_threshold, max_iter, max_step, rand_seed,
                               guidance_scale)

        blank_samples = batch_size % 2 if batch_size > 1 else 0
        gen_images = [x for i, x in enumerate(gen_images)] \
                     + [_ for _ in range(blank_samples)] \
                     + [_ for _ in range(4 - batch_size - blank_samples)]

        return gen_images + [state]

    '''
    inference model
    '''

    @spaces.GPU(duration=180)
    def inference(device, unet, vae, tokenizer, text_encoder, prompt, bboxes, object_positions, batch_size, loss_scale,
                  loss_threshold, max_iter, max_index_step, rand_seed, guidance_scale):
        uncond_input = tokenizer(
            [""] * 1, padding="max_length", max_length=tokenizer.model_max_length, return_tensors="pt"
        )
        uncond_embeddings = text_encoder(uncond_input.input_ids.to(device))[0]

        input_ids = tokenizer(
            prompt,
            padding="max_length",
            truncation=True,
            max_length=tokenizer.model_max_length,
            return_tensors="pt",
        ).input_ids[0].unsqueeze(0).to(device)
        # text_embeddings = text_encoder(input_ids)[0]
        text_embeddings = torch.cat([uncond_embeddings, text_encoder(input_ids)[0]])
        # text_embeddings[1, 1, :] = text_embeddings[1, 2, :]
        generator = torch.manual_seed(rand_seed)  # Seed generator to create the inital latent noise

        latents = torch.randn(
            (batch_size, 4, 64, 64),
            generator=generator,
        ).to(device)

        noise_scheduler = LMSDiscreteScheduler(beta_start=0.00085, beta_end=0.012, beta_schedule="scaled_linear",
                                               num_train_timesteps=1000)

        # generator = torch.Generator("cuda").manual_seed(1024)
        noise_scheduler.set_timesteps(51)

        latents = latents * noise_scheduler.init_noise_sigma

        loss = torch.tensor(10000)

        for index, t in enumerate(noise_scheduler.timesteps):
            iteration = 0

            while loss.item() / loss_scale > loss_threshold and iteration < max_iter and index < max_index_step:
                latents = latents.requires_grad_(True)

                # latent_model_input = torch.cat([latents] * 2)
                latent_model_input = latents

                latent_model_input = noise_scheduler.scale_model_input(latent_model_input, t)
                noise_pred, attn_map_integrated_up, attn_map_integrated_mid, attn_map_integrated_down = \
                    unet(latent_model_input, t, encoder_hidden_states=text_encoder(input_ids)[0])

                # update latents with guidence from gaussian blob

                loss = compute_ca_loss(attn_map_integrated_mid, attn_map_integrated_up, bboxes=bboxes,
                                       object_positions=object_positions) * loss_scale

                print(loss.item() / loss_scale)

                grad_cond = torch.autograd.grad(loss.requires_grad_(True), [latents])[0]

                latents = latents - grad_cond * noise_scheduler.sigmas[index] ** 2
                iteration += 1
                torch.cuda.empty_cache()
            torch.cuda.empty_cache()

            with torch.no_grad():

                latent_model_input = torch.cat([latents] * 2)

                latent_model_input = noise_scheduler.scale_model_input(latent_model_input, t)
                noise_pred, attn_map_integrated_up, attn_map_integrated_mid, attn_map_integrated_down = \
                    unet(latent_model_input, t, encoder_hidden_states=text_embeddings)

                noise_pred = noise_pred.sample

                # perform classifier-free guidance
                noise_pred_uncond, noise_pred_text = noise_pred.chunk(2)
                noise_pred = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond)

                latents = noise_scheduler.step(noise_pred, t, latents).prev_sample
                torch.cuda.empty_cache()
        # Decode image
        with torch.no_grad():
            # print("decode image")
            latents = 1 / 0.18215 * latents
            image = vae.decode(latents).sample
            image = (image / 2 + 0.5).clamp(0, 1)
            image = image.detach().cpu().permute(0, 2, 3, 1).numpy()
            images = (image * 255).round().astype("uint8")
            pil_images = [Image.fromarray(image) for image in images]
            return pil_images


    with Blocks(
            css=css,
            analytics_enabled=False,
            title="Layout-Guidance demo",
    ) as demo:
        description = """<p style="text-align: center; font-weight: bold;">
            <span style="font-size: 28px">Layout Guidance</span>
            <br>
            <span style="font-size: 18px" id="paper-info">
                [<a href=" " target="_blank">Project Page</a>]
                [<a href=" " target="_blank">Paper</a>]
                [<a href=" " target="_blank">GitHub</a>]
            </span>
        </p>
        """
        gr.HTML(description)
        with gr.Column():
            language_instruction = gr.Textbox(
                label="Text Prompt",
            )
            grounding_instruction = gr.Textbox(
                label="Grounding instruction (Separated by semicolon)",
            )
            sketch_pad_trigger = gr.Number(value=0, visible=False)
            sketch_pad_resize_trigger = gr.Number(value=0, visible=False)
            init_white_trigger = gr.Number(value=0, visible=False)
            image_scale = gr.Number(value=0, elem_id="image_scale", visible=False)
            new_image_trigger = gr.Number(value=0, visible=False)


            with gr.Row():
                sketch_pad = gr.Paint(label="Sketch Pad", container=False, layers=False, scale=1, elem_id="img2img_image", canvas_size=(512,512))
                out_imagebox = gr.Image(type="pil", label="Parsed Sketch Pad")
                out_gen_1 = gr.Image(type="pil", visible=True, label="Generated Image")

            with gr.Row():
                clear_btn = gr.Button(value='Clear')
                gen_btn = gr.Button(value='Generate')

            with gr.Accordion("Advanced Options", open=False):
                with gr.Column():
                    description = """<div class="tooltip">Loss Scale Factor &#9432
                        <span class="tooltiptext">The scale factor of the backward guidance loss. The larger it is, the better control we get while it sometimes losses fidelity. </span>
                        </div>
                        <div class="tooltip">Guidance Scale &#9432
                        <span class="tooltiptext">The scale factor of classifier-free guidance. </span>
                        </div>
                        <div class="tooltip" >Max Iteration per Step &#9432
                        <span class="tooltiptext">The max iterations of backward guidance in each diffusion inference process.</span>
                        </div>
                        <div class="tooltip" >Loss Threshold &#9432
                        <span class="tooltiptext">The threshold of loss. If the loss computed by cross-attention map is smaller then the threshold, the backward guidance is stopped. </span>
                        </div>
                        <div class="tooltip" >Max Step of Backward Guidance &#9432
                        <span class="tooltiptext">The max steps of backward guidance in diffusion inference process.</span>
                        </div>
                    """
                    gr.HTML(description)
                    Loss_scale = gr.Slider(minimum=0, maximum=500, step=5, value=30,label="Loss Scale Factor")
                    guidance_scale = gr.Slider(minimum=0, maximum=50, step=0.5, value=7.5, label="Guidance Scale")
                    batch_size = gr.Slider(minimum=1, maximum=4, step=1, value=1, label="Number of Samples", visible=False)
                    max_iter = gr.Slider(minimum=0, maximum=10, step=1, value=5, label="Max Iteration per Step")
                    loss_threshold = gr.Slider(minimum=0, maximum=1, step=0.1, value=0.2, label="Loss Threshold")
                    max_step = gr.Slider(minimum=0, maximum=50, step=1, value=10, label="Max Step of Backward Guidance")
                    rand_seed = gr.Slider(minimum=0, maximum=1000, step=1, value=445, label="Random Seed")

            state = gr.State({})


            class Controller:
                def __init__(self):
                    self.calls = 0
                    self.tracks = 0
                    self.resizes = 0
                    self.scales = 0

                def init_white(self, init_white_trigger):
                    self.calls += 1
                    return np.ones((512, 512), dtype='uint8') * 255, 1.0, init_white_trigger + 1

                def change_n_samples(self, n_samples):
                    blank_samples = n_samples % 2 if n_samples > 1 else 0
                    return [gr.Image.update(visible=True) for _ in range(n_samples + blank_samples)] \
                        + [gr.Image.update(visible=False) for _ in range(4 - n_samples - blank_samples)]


            controller = Controller()
            demo.load(
                lambda x: x + 1,
                inputs=sketch_pad_trigger,
                outputs=sketch_pad_trigger,
                queue=False)
            sketch_pad.change(
                draw,
                inputs=[sketch_pad, grounding_instruction, sketch_pad_resize_trigger, state],
                outputs=[out_imagebox, sketch_pad_resize_trigger, image_scale, state],
                concurrency_limit=1,
                queue=False,
            )
            grounding_instruction.change(
                draw,
                inputs=[sketch_pad, grounding_instruction, sketch_pad_resize_trigger, state],
                outputs=[out_imagebox, sketch_pad_resize_trigger, image_scale, state],
                concurrency_limit=1,
                queue=False,
            )
            clear_btn.click(
                clear,
                inputs=[sketch_pad_trigger, sketch_pad_trigger, batch_size, state],
                outputs=[sketch_pad, sketch_pad_trigger, out_imagebox, image_scale, out_gen_1, state],
                concurrency_limit=1,
                queue=False)

            sketch_pad_trigger.change(
                controller.init_white,
                inputs=[init_white_trigger],
                outputs=[sketch_pad, image_scale, init_white_trigger],
                concurrency_limit=1,
                queue=False)

            gen_btn.click(
                fn=partial(generate, unet, vae, tokenizer, text_encoder),
                inputs=[
                    language_instruction, grounding_instruction, sketch_pad,
                    loss_threshold, guidance_scale, batch_size, rand_seed,
                    max_step,
                    Loss_scale, max_iter,
                    state,
                ],
                outputs=[out_gen_1, state],
                concurrency_limit=1,
                queue=True
            )
            sketch_pad_resize_trigger.change(
                None,
                None,
                sketch_pad_resize_trigger,
                js=rescale_js,
                concurrency_limit=1,
                queue=False)
            init_white_trigger.change(
                None,
                None,
                init_white_trigger,
                js=rescale_js,
                concurrency_limit=1,
                queue=False)

        with gr.Column():
            gr.Examples(
                examples=[
                    [
                        # "images/input.png",
                        "A hello kitty toy is playing with a purple ball.",
                        "hello kitty;ball",
                        "images/hello_kitty_results.png"
                    ],
                ],
                inputs=[language_instruction, grounding_instruction, out_gen_1],
                outputs=None,
                fn=None,
                cache_examples=False,
            )
        description = """<p> The source codes of the demo are modified based on the <a href="https://huggingface.co/spaces/gligen/demo/tree/main">GlIGen</a>. Thanks! </p>"""
        gr.HTML(description)

    demo.queue(api_open=False)
    demo.launch(share=False, show_api=False, show_error=True)

if __name__ == '__main__':
    main()