File size: 15,987 Bytes
19c4ddf
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
import gradio as gr
import torch
import numpy as np
from functools import partial
from typing import Optional
from shap_e.diffusion.gaussian_diffusion import diffusion_from_config
from shap_e.diffusion.sample import sample_latents
from shap_e.models.download import load_model, load_config
from shap_e.util.notebooks import create_pan_cameras, decode_latent_mesh
import trimesh
import torch.nn as nn
import os
import random
import warnings
from huggingface_hub import hf_hub_download
import hashlib

import sys

sys.tracebacklimit = 0
def set_seed(seed=1024):
    random.seed(seed)
    np.random.seed(seed)
    torch.manual_seed(seed)
    if torch.cuda.is_available():
        torch.cuda.manual_seed(seed)
        torch.cuda.manual_seed_all(seed)
        torch.backends.cudnn.deterministic = True

def freeze_params(params):
    for param in params:
        param.requires_grad = False

class Blocks(gr.Blocks):

    def __init__(
            self,
            theme: str = "default",
            analytics_enabled: Optional[bool] = None,
            mode: str = "blocks",
            title: str = "Gradio",
            css: Optional[str] = None,
            **kwargs,
    ):
        self.extra_configs = {
            'thumbnail': kwargs.pop('thumbnail', ''),
            'url': kwargs.pop('url', 'https://gradio.app/'),
            'creator': kwargs.pop('creator', '@teamGradio'),
        }

        super(Blocks, self).__init__(theme, analytics_enabled, mode, title, css, **kwargs)
        warnings.filterwarnings("ignore")

    def get_config_file(self):
        config = super(Blocks, self).get_config_file()

        for k, v in self.extra_configs.items():
            config[k] = v

        return config
def optimize_all(xm, models, initial_noise, noise_start_t, diffusion, latent_model, device, prompt, instruction, rand_seed):
    state = {}
    out_gen_1, out_gen_2, out_gen_3, out_gen_4, state = generate_3d_with_shap_e(xm, diffusion, latent_model, device, prompt, rand_seed, state)
    edited_1, edited_2, edited_3, edited_4, state = _3d_editing(xm, models, diffusion, initial_noise, noise_start_t, device, instruction, rand_seed, state)
    print(state)
    return out_gen_1, out_gen_2, out_gen_3, out_gen_4, edited_1, edited_2, edited_3, edited_4
def generate_3d_with_shap_e(xm, diffusion, latent_model, device, prompt, rand_seed, state):
    set_seed(rand_seed)
    batch_size = 4
    guidance_scale = 15.0
    xm.renderer.volume.bbox_max = torch.tensor([1.0, 1.0, 1.0]).to(device)
    xm.renderer.volume.bbox_min = torch.tensor([-1.0, -1.0, -1.0]).to(device)
    xm.renderer.volume.bbox = torch.stack([xm.renderer.volume.bbox_min, xm.renderer.volume.bbox_max])

    print("prompt: ", prompt, "rand_seed: ", rand_seed, "state:",  state)
    latents = sample_latents(
        batch_size=batch_size,
        model=latent_model,
        diffusion=diffusion,
        guidance_scale=guidance_scale,
        model_kwargs=dict(texts=[prompt] * batch_size),
        progress=True,
        clip_denoised=True,
        use_fp16=True,
        use_karras=True,
        karras_steps=64,
        sigma_min=1e-3,
        sigma_max=160,
        s_churn=0,
    )
    prompt_hash = str(hashlib.sha256((prompt + '_' + str(rand_seed)).encode('utf-8')).hexdigest())
    mesh_path = []
    output_path = './logs'
    os.makedirs(os.path.join(output_path, 'source'), exist_ok=True)
    state['latent'] = []
    state['prompt'] = prompt
    state['rand_seed_1'] = rand_seed
    for i, latent in enumerate(latents):

        output_path_tmp = os.path.join(output_path, 'source', '{}_{}.obj'.format(prompt_hash, i))
        t_obj = decode_latent_mesh(xm, latent).tri_mesh()
        with open(output_path_tmp, 'w') as f:
            t_obj.write_obj(f)

        mesh = trimesh.load_mesh(output_path_tmp)
        angle = np.radians(180)
        axis = [0, 1, 0]
        rotation_matrix = trimesh.transformations.rotation_matrix(angle, axis)
        mesh.apply_transform(rotation_matrix)
        angle = np.radians(90)
        axis = [1, 0, 0]
        rotation_matrix = trimesh.transformations.rotation_matrix(angle, axis)
        mesh.apply_transform(rotation_matrix)
        output_path_tmp = os.path.join(output_path, 'source', '{}_{}.obj'.format(prompt_hash, i))
        mesh.export(output_path_tmp)
        state['latent'].append(latent.clone().detach())
        mesh_path.append(output_path_tmp)

    return mesh_path[0], mesh_path[1], mesh_path[2], mesh_path[3], state

def _3d_editing(xm, models, diffusion, initial_noise, start_t, device, instruction, rand_seed, state):
    set_seed(rand_seed)
    mesh_path = []
    prompt = state['prompt']
    rand_seed_1 = state['rand_seed_1']
    print("prompt: ", prompt, "rand_seed: ", rand_seed, "instruction:", instruction, "state:",  state)
    prompt_hash = str(hashlib.sha256((prompt + '_' + str(rand_seed_1) + '_' + instruction + '_' + str(rand_seed)).encode('utf-8')).hexdigest())
    if 'santa' in instruction:
        e_type = 'santa_hat'
    elif 'rainbow' in instruction:
        e_type = 'rainbow'
    elif 'gold' in instruction:
        e_type = 'golden'
    elif 'lego' in instruction:
        e_type = 'lego'
    elif 'wooden' in instruction:
        e_type = 'wooden'
    elif 'cyber' in instruction:
        e_type = 'cyber'

    # import pdb; pdb.set_trace()
    model = models[e_type].to(device)
    noise_initial = initial_noise[e_type].to(device)
    noise_start_t = start_t[e_type]
    general_save_path = './logs/edited'
    os.makedirs(general_save_path, exist_ok=True)
    for i, latent in enumerate(state['latent']):
        latent = latent.to(device)
        text_embeddings_clip = model.cached_model_kwargs(1, dict(texts=[instruction]))
        print("shape of latent: ", latent.clone().unsqueeze(0).shape, "instruction: ", instruction)
        ref_latent = latent.clone().unsqueeze(0)
        t_1 = torch.randint(noise_start_t, noise_start_t + 1, (1,), device=device).long()

        noise_input = diffusion.q_sample(ref_latent, t_1, noise=noise_initial)
        out_1 = diffusion.p_mean_variance(model, noise_input, t_1, clip_denoised=True,
                                          model_kwargs=text_embeddings_clip,
                                          condition_latents=ref_latent)

        updated_latents = out_1['pred_xstart']

        if 'santa' in instruction:
            xm.renderer.volume.bbox_max = torch.tensor([1.0, 1.0, 1.25]).to(device)
            xm.renderer.volume.bbox_min = torch.tensor([-1.0, -1.0, -1]).to(device)
            xm.renderer.volume.bbox = torch.stack([xm.renderer.volume.bbox_min, xm.renderer.volume.bbox_max])

        else:
            xm.renderer.volume.bbox_max = torch.tensor([1.0, 1.0, 1.0]).to(device)
            xm.renderer.volume.bbox_min = torch.tensor([-1.0, -1.0, -1.0]).to(device)
            xm.renderer.volume.bbox = torch.stack([xm.renderer.volume.bbox_min, xm.renderer.volume.bbox_max])

        for latent_idx, updated_latent in enumerate(updated_latents):
            output_path = os.path.join(general_save_path, '{}_{}.obj'.format(prompt_hash, i))

            t = decode_latent_mesh(xm, updated_latent).tri_mesh()
            with open(output_path, 'w') as f:
                t.write_obj(f)
            mesh = trimesh.load_mesh(output_path)

            angle = np.radians(180)
            axis = [0, 1, 0]

            rotation_matrix = trimesh.transformations.rotation_matrix(angle, axis)
            mesh.apply_transform(rotation_matrix)
            angle = np.radians(90)
            axis = [1, 0, 0]

            rotation_matrix = trimesh.transformations.rotation_matrix(angle, axis)
            mesh.apply_transform(rotation_matrix)

            output_path = os.path.join(general_save_path, '{}_{}.obj'.format(prompt_hash, i))
            mesh.export(output_path)
            mesh_path.append(output_path)
    return mesh_path[0], mesh_path[1], mesh_path[2], mesh_path[3], state
def main():

    css = """
    #img2img_image, #img2img_image > .fixed-height, #img2img_image > .fixed-height > div, #img2img_image > .fixed-height > div > img
    {
        height: var(--height) !important;
        max-height: var(--height) !important;
        min-height: var(--height) !important;
    }
    #paper-info a {
        color:#008AD7;
        text-decoration: none;
    }
    #paper-info a:hover {
        cursor: pointer;
        text-decoration: none;
    }

    .tooltip {
        color: #555;
        position: relative;
        display: inline-block;
        cursor: pointer;
    }

    .tooltip .tooltiptext {
        visibility: hidden;
        width: 400px;
        background-color: #555;
        color: #fff;
        text-align: center;
        padding: 5px;
        border-radius: 5px;
        position: absolute;
        z-index: 1; /* Set z-index to 1 */
        left: 10px;
        top: 100%;
        opacity: 0;
        transition: opacity 0.3s;
    }

    .tooltip:hover .tooltiptext {
        visibility: visible;
        opacity: 1;
        z-index: 9999; /* Set a high z-index value when hovering */
    }


    """

    rescale_js = """
    function(x) {
        const root = document.querySelector('gradio-app').shadowRoot || document.querySelector('gradio-app');
        let image_scale = parseFloat(root.querySelector('#image_scale input').value) || 1.0;
        const image_width = root.querySelector('#img2img_image').clientWidth;
        const target_height = parseInt(image_width * image_scale);
        document.body.style.setProperty('--height', `${target_height}px`);
        root.querySelectorAll('button.justify-center.rounded')[0].style.display='none';
        root.querySelectorAll('button.justify-center.rounded')[1].style.display='none';
        return x;
    }
    """
    device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
    latent_model = load_model('text300M', device=device)
    xm = load_model('transmitter', device=device)
    diffusion = diffusion_from_config(load_config('diffusion'))
    freeze_params(xm.parameters())
    models = dict()
    initial_noise = dict()
    noise_start_t = dict()
    editing_types = ['rainbow', 'santa_hat', 'lego', 'golden', 'wooden', 'cyber']

    for editing_type in editing_types:
        tmp_model = load_model('text300M', device=device)
        with torch.no_grad():
            new_proj = nn.Linear(1024 * 2, 1024, device=device, dtype=tmp_model.wrapped.input_proj.weight.dtype)
            new_proj.weight = nn.Parameter(torch.zeros_like(new_proj.weight))
            new_proj.weight[:, :1024].copy_(tmp_model.wrapped.input_proj.weight)  #
            new_proj.bias = nn.Parameter(torch.zeros_like(new_proj.bias))
            new_proj.bias[:1024].copy_(tmp_model.wrapped.input_proj.bias)
            tmp_model.wrapped.input_proj = new_proj

        ckp = torch.load(hf_hub_download(repo_id='silentchen/Shap_Editor', subfolder='single', filename='{}.pt'.format(editing_type)), map_location='cpu')
        tmp_model.load_state_dict(ckp['model'])
        noise_initial = ckp['initial_noise']['noise'].to(device)
        initial_noise[editing_type] = noise_initial
        noise_start_t[editing_type] = ckp['t_start']
        models[editing_type] = tmp_model

    with Blocks(
            css=css,
            analytics_enabled=False,
            title="SHAPE-EDITOR demo",
    ) as demo:
        description = """<p style="text-align: center; font-weight: bold;">
            <span style="font-size: 28px"> <span style="font-size: 140%">S</span>HAP-<span style="font-size: 140%">E</span>DITOR: Instruction-guided <br> Latent 3D Editing in Seconds</span>
            <br>
            <span style="font-size: 18px" id="paper-info">
                [<a href=" " target="_blank">Project Page</a>]
                [<a href=" " target="_blank">Paper</a>]
                [<a href=" " target="_blank">GitHub</a>]
            </span>
        </p>
        """
        state = gr.State({})
        gr.HTML(description)
        with gr.Column():
            with gr.Column():
                gr.HTML('<span style="font-size: 20px; font-weight: bold">Step 1: generate original 3D object using Shap-E.</span>')
                prompt = gr.Textbox(
                    label="Text prompt for initial 3D generation", lines=1
                )
                gen_btn = gr.Button(value='Generate', scale=1)


            with gr.Column():
                gr.HTML('<span style="font-size: 20px; font-weight: bold">Generated 3D objects</span>')
                with gr.Row():
                    out_gen_1 = gr.Model3D(clear_color=[0.0, 0.0, 0.0, 0.0], visible=True, label="3D Model 1 (step 1)")
                    out_gen_2 = gr.Model3D(clear_color=[0.0, 0.0, 0.0, 0.0], visible=True, label="3D Model 2 (step 1)")
                    out_gen_3 = gr.Model3D(clear_color=[0.0, 0.0, 0.0, 0.0], visible=True, label="3D Model 3 (step 1)")
                    out_gen_4 = gr.Model3D(clear_color=[0.0, 0.0, 0.0, 0.0],  visible=True, label="3D Model 4 (step 1)")

            with gr.Column(scale=1):
                gr.HTML('<span style="font-size: 20px; font-weight: bold">Step 2: apply 3D editing with S</span>HAP-<span style="font-size: 140%">E</span>DITOR.</span>')

                editing_choice = gr.Dropdown(
                    ["Add a santa hat to it", "Make it look like made of gold", "Make the color of it look like rainbow", "Make it in cyberpunk style", "Make it wooden", "Make it look like make of lego"], value='Add a santa hat to it', multiselect=False, label="Editing effects", info="Select specific editing you want to apply!"
                ),
                apply_btn = gr.Button(value='Editing', scale=1)

            with gr.Column(scale=3):
                gr.HTML('<span style="font-size: 20px; font-weight: bold">Edited 3D objects</span>')
                with gr.Row():
                    edited_1 = gr.Model3D(clear_color=[0.0, 0.0, 0.0, 0.0], visible=True, label="3D Model 1 (step 2)")
                    edited_2 = gr.Model3D(clear_color=[0.0, 0.0, 0.0, 0.0], visible=True, label="3D Model 2 (step 2)")
                    edited_3 = gr.Model3D(clear_color=[0.0, 0.0, 0.0, 0.0], visible=True, label="3D Model 3 (step 2)")
                    edited_4 = gr.Model3D(clear_color=[0.0, 0.0, 0.0, 0.0], visible=True, label="3D Model 4 (step 2)")


            with gr.Accordion("Advanced Options", open=False):
                rand_seed = gr.Slider(minimum=0, maximum=1000, step=1, value=445, label="Random seed")

            gen_btn.click(
                fn=partial(generate_3d_with_shap_e, xm, diffusion, latent_model, device),
                inputs=[prompt, rand_seed, state],
                outputs=[out_gen_1, out_gen_2, out_gen_3, out_gen_4, state],
                queue=False)

            apply_btn.click(
                fn=partial(_3d_editing, xm, models, diffusion, initial_noise, noise_start_t, device),
                inputs=[
                    editing_choice[0], rand_seed, state
                ],
                outputs=[edited_1, edited_2, edited_3, edited_4, state],
                queue=True
            )
        print("Generate examples...")
        with gr.Column():
            gr.Examples(
                examples=[
                    [   "a corgi",
                        "Make the color of it look like rainbow",
                        456,
                    ],
                    ["a penguin",
                     "Make it look like make of lego",
                     214,
                     ],
                ],
                inputs=[prompt, editing_choice[0], rand_seed],
                outputs=[out_gen_1, out_gen_2, out_gen_3, out_gen_4, edited_1, edited_2, edited_3, edited_4],
                fn=partial(optimize_all, xm, models, initial_noise, noise_start_t, diffusion, latent_model, device),
                cache_examples=True,
            )


    demo.queue(max_size=10, api_open=False)
    demo.launch(share=True, show_api=False, show_error=True)

if __name__ == '__main__':
    main()