File size: 19,811 Bytes
880bb9c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d09ff05
96cbe01
 
d09ff05
 
880bb9c
 
 
 
 
 
 
 
 
 
 
1265a74
 
880bb9c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9afb6a2
 
 
 
 
 
 
 
 
880bb9c
 
 
 
 
 
 
 
 
d09ff05
880bb9c
96cbe01
880bb9c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9afb6a2
 
 
 
 
 
 
 
 
 
 
 
 
880bb9c
1265a74
 
880bb9c
 
9afb6a2
 
 
 
 
880bb9c
 
9afb6a2
 
 
880bb9c
 
 
 
 
 
 
 
9afb6a2
 
 
 
880bb9c
 
 
 
 
 
 
 
 
 
 
9afb6a2
 
 
 
 
 
 
 
 
 
880bb9c
9afb6a2
 
 
 
880bb9c
 
 
9afb6a2
 
 
880bb9c
 
 
96cbe01
880bb9c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
96cbe01
880bb9c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d09ff05
 
1265a74
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
from flask import Flask, render_template, request, jsonify
from geopy.geocoders import Nominatim
import folium
import os
import time
from datetime import datetime
from selenium import webdriver
from selenium.webdriver.chrome.options import Options
import cv2
import numpy as np
from PIL import Image
import logging
import uuid
from werkzeug.utils import secure_filename
from PIL import Image, ImageDraw

logging.basicConfig(level=logging.DEBUG)

app = Flask(__name__)

# Configure screenshot directory
SCREENSHOT_DIR = os.path.join(app.static_folder, 'screenshots')
os.makedirs(SCREENSHOT_DIR, exist_ok=True)

UPLOAD_FOLDER = os.path.join(app.static_folder, 'uploads')
ALLOWED_EXTENSIONS = {'png', 'jpg', 'jpeg', 'tif', 'tiff'}
os.makedirs(UPLOAD_FOLDER, exist_ok=True)

app.config['UPLOAD_FOLDER'] = UPLOAD_FOLDER
app.config['MAX_CONTENT_LENGTH'] = 16 * 1024 * 1024  # 16MB max file size

PORT = int(os.getenv('PORT', 7860))

def allowed_file(filename):
    return '.' in filename and filename.rsplit('.', 1)[1].lower() in ALLOWED_EXTENSIONS

def kmeans_segmentation(image, n_clusters=8):
    """
    Enhanced segmentation using multiple color spaces and improved filters
    """
    try:
        # Convert PIL Image to CV2 format
        cv_image = cv2.cvtColor(np.array(image), cv2.COLOR_RGB2BGR)
        
        # Create mask for non-black pixels with more lenient threshold
        hsv = cv2.cvtColor(cv_image, cv2.COLOR_BGR2HSV)
        non_black_mask = cv2.inRange(hsv, np.array([0, 0, 15]), np.array([180, 255, 255]))
        
        # Enhanced color ranges for better classification
        color_ranges = {
            'vegetation': {
                'hsv': {
                    'lower': np.array([30, 40, 40]),
                    'upper': np.array([90, 255, 255])
                },
                'lab': {
                    'lower': np.array([0, 0, 125]),
                    'upper': np.array([255, 120, 255])
                },
                'color': (0, 255, 0)  # Green
            },
            'water': {
                'hsv': {
                    'lower': np.array([85, 30, 30]),
                    'upper': np.array([140, 255, 255])
                },
                'lab': {
                    'lower': np.array([0, 115, 0]),
                    'upper': np.array([255, 255, 130])
                },
                'color': (255, 0, 0)  # Blue
            },
            'building': {
                'hsv': {
                    'lower': np.array([0, 0, 100]),
                    'upper': np.array([180, 50, 255])
                },
                'lab': {
                    'lower': np.array([50, 115, 115]),
                    'upper': np.array([200, 140, 140])
                },
                'color': (128, 128, 128)  # Gray
            },
            'terrain': {
                'hsv': {
                    'lower': np.array([0, 20, 40]),  # Broader range for terrain
                    'upper': np.array([30, 255, 220])
                },
                'lab': {
                    'lower': np.array([20, 110, 110]),  # Adjusted LAB range
                    'upper': np.array([200, 140, 140])
                },
                'color': (139, 69, 19)  # Brown
            }
        }
        
        # Get only non-black pixels for clustering
        valid_pixels = cv_image[non_black_mask > 0].reshape(-1, 3).astype(np.float32)
        
        if len(valid_pixels) == 0:
            raise ValueError("No valid pixels found after filtering")
        
        # Perform k-means clustering on non-black pixels
        criteria = (cv2.TERM_CRITERIA_EPS + cv2.TERM_CRITERIA_MAX_ITER, 100, 0.2)
        _, labels, centers = cv2.kmeans(valid_pixels, n_clusters, None, criteria, 10, cv2.KMEANS_RANDOM_CENTERS)
        
        # Convert centers to uint8
        centers = np.uint8(centers)
        
        # Create segmented image
        height, width = cv_image.shape[:2]
        segmented = np.zeros((height, width, 3), dtype=np.uint8)
        
        # Create mask for each cluster
        valid_indices = np.where(non_black_mask > 0)
        segmented[valid_indices] = centers[labels.flatten()]
        
        results = {}
        masks = {}
        total_valid_pixels = np.count_nonzero(non_black_mask)
        
        # Initialize masks for each feature
        for feature in color_ranges:
            masks[feature] = np.zeros((height, width, 3), dtype=np.uint8)
        masks['other'] = np.zeros((height, width, 3), dtype=np.uint8)
        
        # Analyze original image colors for each cluster
        for cluster_id in range(n_clusters):
            cluster_mask = np.zeros((height, width), dtype=np.uint8)
            cluster_mask[valid_indices] = (labels.flatten() == cluster_id).astype(np.uint8)
            
            # Get original colors for this cluster
            cluster_pixels = cv_image[cluster_mask > 0]
            if len(cluster_pixels) == 0:
                continue
            
            # Convert to both HSV and LAB color spaces
            cluster_hsv = cv2.cvtColor(cluster_pixels.reshape(-1, 1, 3), cv2.COLOR_BGR2HSV)
            cluster_lab = cv2.cvtColor(cluster_pixels.reshape(-1, 1, 3), cv2.COLOR_BGR2LAB)
            
            # Count pixels matching each feature in both color spaces
            feature_counts = {}
            for feature, ranges in color_ranges.items():
                hsv_mask = cv2.inRange(cluster_hsv, ranges['hsv']['lower'], ranges['hsv']['upper'])
                lab_mask = cv2.inRange(cluster_lab, ranges['lab']['lower'], ranges['lab']['upper'])
                
                # Combine results from both color spaces
                combined_mask = cv2.bitwise_or(hsv_mask, lab_mask)
                feature_counts[feature] = np.count_nonzero(combined_mask)
                
                # Additional texture analysis for building detection
                if feature == 'building':
                    gray = cv2.cvtColor(cluster_pixels.reshape(-1, 1, 3), cv2.COLOR_BGR2GRAY)
                    local_std = np.std(gray)
                    
                    # Calculate gradient magnitude using Sobel
                    sobelx = cv2.Sobel(gray, cv2.CV_64F, 1, 0, ksize=3)
                    sobely = cv2.Sobel(gray, cv2.CV_64F, 0, 1, ksize=3)
                    gradient_magnitude = np.sqrt(sobelx**2 + sobely**2)
                    
                    # Adjust feature count based on texture analysis
                    if local_std < 30 and np.mean(gradient_magnitude) > 10:
                        feature_counts[feature] *= 1.5  # Boost building detection score
                    elif local_std > 50:
                        feature_counts[feature] *= 0.5  # Reduce building detection score
                
                # Additional texture and color analysis for terrain/ground
                elif feature == 'terrain':
                    # Calculate texture features
                    gray = cv2.cvtColor(cluster_pixels.reshape(-1, 1, 3), cv2.COLOR_BGR2GRAY)
                    local_std = np.std(gray)
                    
                    # Calculate GLCM features
                    glcm = np.zeros((256, 256), dtype=np.uint8)
                    for i in range(len(gray)-1):
                        glcm[gray[i], gray[i+1]] += 1
                    glcm_sum = np.sum(glcm)
                    if glcm_sum > 0:
                        glcm = glcm / glcm_sum
                    
                    # Calculate homogeneity
                    homogeneity = np.sum(glcm / (1 + np.abs(np.arange(256)[:, None] - np.arange(256))))
                    
                    # Color analysis
                    avg_saturation = np.mean(cluster_hsv[:, :, 1])
                    avg_value = np.mean(cluster_hsv[:, :, 2])
                    
                    # Adjust feature count based on multiple criteria
                    if (20 < local_std < 60 and homogeneity > 0.5 
                        and avg_saturation < 100 and 40 < avg_value < 200):
                        feature_counts[feature] *= 1.8  # Boost terrain detection
                    elif local_std > 80 or avg_saturation > 150:
                        feature_counts[feature] *= 0.4  # Reduce score
                    
                    # Check for grass-like patterns
                    if (30 <= np.mean(cluster_hsv[:, :, 0]) <= 90 
                        and avg_saturation > 30 and local_std < 40):
                        feature_counts['vegetation'] = feature_counts.get('vegetation', 0) + feature_counts[feature]
                        feature_counts[feature] *= 0.5
            
            # Assign cluster to feature with highest pixel count
            if any(feature_counts.values()):
                dominant_feature = max(feature_counts.items(), key=lambda x: x[1])[0]
                if dominant_feature not in results:
                    results[dominant_feature] = 0
                
                pixel_count = np.count_nonzero(cluster_mask)
                percentage = (pixel_count / total_valid_pixels) * 100
                results[dominant_feature] += percentage
                
                # Update feature mask
                masks[dominant_feature][cluster_mask > 0] = color_ranges[dominant_feature]['color']
            else:
                # Unclassified pixels
                if 'other' not in results:
                    results['other'] = 0
                pixel_count = np.count_nonzero(cluster_mask)
                percentage = (pixel_count / total_valid_pixels) * 100
                results['other'] += percentage
                masks['other'][cluster_mask > 0] = (200, 200, 200)  # Light gray
        
        # Filter results and save masks
        filtered_results = {}
        filtered_masks = {}
        
        for feature, percentage in results.items():
            if percentage > 0.5:  # Only include if more than 0.5%
                filtered_results[feature] = round(percentage, 1)
                
                # Save mask
                mask_filename = f'mask_{feature}_{uuid.uuid4().hex[:8]}.png'
                mask_path = os.path.join(app.static_folder, 'masks', mask_filename)
                cv2.imwrite(mask_path, masks[feature])
                filtered_masks[feature] = f'/static/masks/{mask_filename}'
        
        # Save segmented image
        segmented_filename = f'segmented_{uuid.uuid4().hex[:8]}.png'
        segmented_path = os.path.join(app.static_folder, 'masks', segmented_filename)
        cv2.imwrite(segmented_path, segmented)
        filtered_masks['segmented'] = f'/static/masks/{segmented_filename}'
        
        return {
            'percentages': dict(sorted(filtered_results.items(), key=lambda x: x[1], reverse=True)),
            'masks': filtered_masks
        }
        
    except Exception as e:
        logging.error(f"Segmentation error: {str(e)}")
        raise

def setup_webdriver():
    chrome_options = Options()
    chrome_options.add_argument('--headless')
    chrome_options.add_argument('--no-sandbox')
    chrome_options.add_argument('--disable-dev-shm-usage')
    
    # Check if running on Windows or Linux
    if os.name == 'nt':  # Windows
        # Let Selenium Manager handle driver installation
        chrome_options.binary_location = None  # Use default Chrome installation
        return webdriver.Chrome(options=chrome_options)
    else:  # Linux
        chrome_options.binary_location = os.getenv('CHROME_BINARY_LOCATION', '/usr/bin/google-chrome')
        return webdriver.Chrome(options=chrome_options)

def create_polygon_mask(image_size, points):
    """Create a mask image from polygon points"""
    mask = Image.new('L', image_size, 0)
    draw = ImageDraw.Draw(mask)
    polygon_points = [(p['x'], p['y']) for p in points]
    draw.polygon(polygon_points, fill=255)
    return mask

@app.route('/')
def index():
    logging.info("Index route accessed")
    return render_template('index.html')

@app.route('/search_location', methods=['POST'])
def search_location():
    try:
        location = request.form.get('location')
        
        # Geocode the location
        geolocator = Nominatim(user_agent="map_screenshot_app")
        location_data = geolocator.geocode(location)
        
        if not location_data:
            return jsonify({'error': 'Location not found'}), 404
        
        # Create a Folium map with controls disabled
        m = folium.Map(
            location=[location_data.latitude, location_data.longitude],
            zoom_start=20,
            tiles='https://server.arcgisonline.com/ArcGIS/rest/services/World_Imagery/MapServer/tile/{z}/{y}/{x}',
            attr='Esri',
            # zoom_control=False,  # Disable zoom control
            # dragging=False,      # Disable dragging
            # scrollWheelZoom=False  # Disable scroll wheel zoom
        )
        
        # Save the map
        map_path = os.path.join(app.static_folder, 'temp_map.html')
        m.save(map_path)
        
        return jsonify({
            'lat': location_data.latitude,
            'lon': location_data.longitude,
            'address': location_data.address
        })
        
    except Exception as e:
        return jsonify({'error': str(e)}), 500

@app.route('/capture_screenshot', methods=['POST'])
def capture_screenshot():
    try:
        data = request.get_json()
        width = data.get('width', 600)
        height = data.get('height', 400)
        polygon_points = data.get('polygon', None)
        map_state = data.get('mapState', None)
        
        filename = f"screenshot_{datetime.now().strftime('%Y%m%d_%H%M%S')}.png"
        filepath = os.path.join(SCREENSHOT_DIR, filename)
        
        # Create a new map with the current state
        if map_state:
            center = map_state['center']
            zoom = map_state['zoom']
            
            m = folium.Map(
                location=[center['lat'], center['lng']],
                zoom_start=zoom,
                tiles='https://server.arcgisonline.com/ArcGIS/rest/services/World_Imagery/MapServer/tile/{z}/{y}/{x}',
                attr='Esri',
                width=width,
                height=height
            )
            
            map_path = os.path.join(app.static_folder, 'temp_map.html')
            m.save(map_path)
        
        time.sleep(1)
        
        try:
            driver = setup_webdriver()
        except Exception as e:
            logging.error(f"Webdriver setup error: {str(e)}")
            error_msg = str(e)
            if "chromedriver" in error_msg.lower():
                return jsonify({
                    'error': 'ChromeDriver setup failed. Please ensure Chrome is installed.'
                }), 500
            return jsonify({
                'error': 'Failed to initialize screenshot capture. Please try again.'
            }), 500
            
        try:
            driver.set_window_size(width + 50, height + 50)
            map_url = f"http://localhost:{PORT}/static/temp_map.html"
            driver.get(map_url)
            time.sleep(3)
            
            # Check if the map loaded properly
            if not os.path.exists(map_path):
                raise Exception("Map file not generated")
                
            driver.save_screenshot(filepath)
            
            if not os.path.exists(filepath):
                raise Exception("Screenshot not saved")
            
            if polygon_points and len(polygon_points) >= 3:
                img = Image.open(filepath)
                mask = create_polygon_mask(img.size, polygon_points)
                cutout = Image.new('RGBA', img.size, (0, 0, 0, 0))
                cutout.paste(img, mask=mask)
                cutout_filename = f"cutout_{datetime.now().strftime('%Y%m%d_%H%M%S')}.png"
                cutout_filepath = os.path.join(SCREENSHOT_DIR, cutout_filename)
                cutout.save(cutout_filepath)
                
                if not os.path.exists(cutout_filepath):
                    raise Exception("Cutout not saved")
                    
                return jsonify({
                    'success': True,
                    'screenshot_path': f'/static/screenshots/{filename}',
                    'cutout_path': f'/static/screenshots/{cutout_filename}'
                })
            
            return jsonify({
                'success': True,
                'screenshot_path': f'/static/screenshots/{filename}'
            })
            
        except Exception as e:
            logging.error(f"Screenshot capture error: {str(e)}")
            error_msg = str(e)
            if "timeout" in error_msg.lower():
                return jsonify({
                    'error': 'Map loading timed out. Please try again.'
                }), 500
            return jsonify({
                'error': 'Failed to capture screenshot. Please try again.'
            }), 500
        finally:
            try:
                driver.quit()
            except:
                pass
            
    except Exception as e:
        logging.error(f"Screenshot error: {str(e)}")
        return jsonify({
            'error': 'An unexpected error occurred. Please try again.'
        }), 500

@app.route('/analyze')
def analyze():
    logging.info("Analyze route accessed")
    try:
        image_path = request.args.get('image')
        if not image_path:
            return "No image provided", 400
            
        # Create masks directory if it doesn't exist
        masks_dir = os.path.join(app.static_folder, 'masks')
        os.makedirs(masks_dir, exist_ok=True)
        
        # Clean up old mask files
        for f in os.listdir(masks_dir):
            if f.startswith(('mask_', 'segmented_')):
                try:
                    os.remove(os.path.join(masks_dir, f))
                except:
                    pass
        
        # Clean up the image path
        image_path = image_path.split('?')[0]
        image_path = image_path.replace('/static/', '')
        full_path = os.path.join(app.static_folder, image_path)
        
        if not os.path.exists(full_path):
            return f"Image file not found: {image_path}", 404
        
        # Load and process image
        image = Image.open(full_path)
        
        # Ensure image is in RGB mode
        if image.mode != 'RGB':
            image = image.convert('RGB')
            
        # Perform k-means segmentation
        segmentation_results = kmeans_segmentation(image)
        
        return render_template('analysis.html', 
                             image_path=request.args.get('image').split('?')[0],
                             results=segmentation_results['percentages'],
                             masks=segmentation_results['masks'])
                             
    except Exception as e:
        logging.error(f"Error in analyze route: {str(e)}", exc_info=True)
        return f"Error processing image: {str(e)}", 500

@app.route('/upload', methods=['POST'])
def upload_file():
    if 'file' not in request.files:
        return jsonify({'error': 'No file part'}), 400
    
    file = request.files['file']
    if file.filename == '':
        return jsonify({'error': 'No selected file'}), 400
    
    if file and allowed_file(file.filename):
        filename = secure_filename(file.filename)
        unique_filename = f"{uuid.uuid4().hex}_{filename}"
        filepath = os.path.join(app.config['UPLOAD_FOLDER'], unique_filename)
        file.save(filepath)
        
        return jsonify({
            'success': True,
            'filepath': f'/static/uploads/{unique_filename}'
        })
    
    return jsonify({'error': 'Invalid file type'}), 400

if __name__ == '__main__':
    app.run(host='0.0.0.0', port=PORT)