File size: 16,613 Bytes
f942a54
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
import os
import re
import torch
import logging
import numpy as np
import gradio as gr
from typing import List, Dict, Optional
from datetime import datetime

from transformers import (
    AutoTokenizer,
    AutoModelForSequenceClassification,
    pipeline
)
from dataclasses import dataclass

import nltk
from nltk.tokenize import sent_tokenize
from neo4j import GraphDatabase

logging.basicConfig(
    level=logging.INFO,
    format='%(asctime)s - %(name)s - %(levelname)s - %(message)s'
)
logger = logging.getLogger(__name__)

# [All the existing classes from the first script remain the same]
@dataclass
class SentimentResult:
    """Structured class to hold sentiment analysis results"""
    text: str
    sentiment: str
    score: float
    confidence: float
    intensity: str

class OptimizedSentimentAnalyzer:
    def __init__(
        self,
        models: List[str] = None,
        device: str = None,
        max_length: int = 512
    ):
        """
        Initialize sentiment analyzer with robust sequence handling

        Args:
            models: List of Hugging Face model names
            device: Processing device (cuda/cpu)
            max_length: Maximum token sequence length
        """
        # Ensure NLTK resources are downloaded
        try:
            nltk.download('punkt', quiet=True)
        except Exception as e:
            logger.warning(f"Could not download NLTK resources: {e}")

        self.device = device or ('cuda' if torch.cuda.is_available() else 'cpu')


        self.model_configs = models or [
            'cardiffnlp/twitter-roberta-base-sentiment-latest',
            'finiteautomata/bertweet-base-sentiment-analysis'
        ]

        # Configuration parameters
        self.max_length = max_length

        # Load models
        self._load_models()

    def _load_models(self):
        """Efficiently load sentiment analysis models with robust tokenization"""
        self.analyzers = []
        self.tokenizers = []

        for model_name in self.model_configs:
            try:

                tokenizer = AutoTokenizer.from_pretrained(model_name)
                model = AutoModelForSequenceClassification.from_pretrained(model_name)


                self.tokenizers.append(tokenizer)


                sentiment_pipeline = pipeline(
                    task="sentiment-analysis",
                    model=model,
                    tokenizer=tokenizer,
                    device=0 if self.device == 'cuda' else -1
                )

                self.analyzers.append(sentiment_pipeline)
                logger.info(f"Successfully loaded model: {model_name}")

            except Exception as e:
                logger.warning(f"Could not load model {model_name}: {e}")

        if not self.analyzers:
            raise RuntimeError("No sentiment models could be loaded")

    def _truncate_text(self, text: str, tokenizer) -> str:
        """
        Intelligently truncate text to fit model's max length

        Args:
            text: Input text to truncate
            tokenizer: Tokenizer for the specific model

        Returns:
            Truncated text
        """
        # Tokenize and truncate
        tokens = tokenizer.encode(
            text,
            add_special_tokens=True,
            max_length=self.max_length,
            truncation=True
        )

        # Decode back to text
        return tokenizer.decode(tokens, skip_special_tokens=True)

    def _process_long_text(self, text: str) -> List[str]:
        """
        Split long text into manageable chunks

        Args:
            text: Full input text

        Returns:
            List of text chunks
        """
        # Tokenize into sentences
        sentences = sent_tokenize(text)

        chunks = []
        current_chunk = []
        current_length = 0

        for sentence in sentences:
            # Estimate token length (rough approximation)
            sentence_tokens = len(sentence.split())

            # If adding this sentence would exceed max length, start a new chunk
            if current_length + sentence_tokens > self.max_length - 50:  # Leave room for special tokens
                chunks.append(' '.join(current_chunk))
                current_chunk = [sentence]
                current_length = sentence_tokens
            else:
                current_chunk.append(sentence)
                current_length += sentence_tokens

        # Add final chunk
        if current_chunk:
            chunks.append(' '.join(current_chunk))

        return chunks

    def analyze_transcript(self, transcript: str) -> Dict:
        """
        Analyze sentiment of a transcript with robust processing

        Args:
            transcript: Full transcript text

        Returns:
            Comprehensive sentiment analysis results
        """
        # Validate input
        if not transcript or not isinstance(transcript, str):
            raise ValueError("Invalid transcript input")

        # Process long text into chunks
        text_chunks = self._process_long_text(transcript)

        # Analyze each chunk
        chunk_results = []
        for chunk in text_chunks:
            # Use the first tokenizer for truncation
            truncated_chunk = self._truncate_text(chunk, self.tokenizers[0])

            # Ensemble sentiment across multiple models
            chunk_sentiments = []
            for analyzer in self.analyzers:
                try:
                    sentiment = analyzer(truncated_chunk)[0]
                    chunk_sentiments.append(sentiment)
                except Exception as e:
                    logger.warning(f"Model sentiment analysis failed: {e}")

            # Aggregate sentiments
            if chunk_sentiments:
                # Determine dominant sentiment
                dominant_sentiment = max(
                    chunk_sentiments,
                    key=lambda x: x['score']
                )

                chunk_results.append(SentimentResult(
                    text=truncated_chunk,
                    sentiment=dominant_sentiment['label'],
                    score=dominant_sentiment['score'],
                    confidence=dominant_sentiment['score'],
                    intensity='moderate'
                ))

        # Overall transcript analysis
        if chunk_results:
            overall_sentiment_score = np.mean([
                result.score for result in chunk_results
            ])

            return {
                'overall_sentiment_score': float(overall_sentiment_score),
                'chunk_results': [
                    {
                        'text': result.text,
                        'sentiment': result.sentiment,
                        'score': result.score
                    } for result in chunk_results
                ]
            }

        raise ValueError("Could not perform sentiment analysis")

class TranscriptParser:
    """Parse and extract conversations from transcript files"""

    @staticmethod
    def parse_timestamp(time_str: str) -> str:
        """
        Convert timestamp from MM:SS format to full datetime

        Args:
            time_str: Timestamp in MM:SS format

        Returns:
            ISO formatted datetime
        """
        try:
            minutes, seconds = map(int, time_str.split(':'))
            base_date = datetime.now()
            return base_date.replace(
                hour=0,
                minute=minutes,
                second=seconds,
                microsecond=0
            ).isoformat()
        except Exception as e:
            logger.warning(f"Timestamp parsing failed: {e}")
            return datetime.now().isoformat()

    @classmethod
    def extract_conversations(cls, text: str) -> List[Dict]:
        """
        Extract structured conversations from transcript text

        Args:
            text: Full transcript text

        Returns:
            List of conversation dictionaries
        """
        conversations = []
        lines = text.strip().split('\n')

        for line in lines:
            if not line.strip():
                continue

            # Extract timestamp
            timestamp_match = re.search(r'\[([0-9]{2}:[0-9]{2})\]', line)
            if timestamp_match:
                timestamp = timestamp_match.group(1)
                # Remove timestamp from line
                line = line.replace(f'[{timestamp}]', '').strip()

                # Split speaker and content
                parts = line.split(' ', 1)
                if len(parts) > 1:
                    speaker, content = parts
                    conversations.append({
                        'timestamp': cls.parse_timestamp(timestamp),
                        'speaker': speaker,
                        'content': content
                    })

        return conversations

class TranscriptProcessor:
    """
    Process and store transcript sentiment analysis results
    Handles database interaction and sentiment analysis
    """

    def __init__(
        self,
        neo4j_uri: str = None,
        neo4j_username: str = None,
        neo4j_password: str = None
    ):
        """
        Initialize transcript processor

        Args:
            neo4j_uri: Neo4j database URI
            neo4j_username: Database username
            neo4j_password: Database password
        """
        # Use environment variables or fallback to default
        self.neo4j_uri = neo4j_uri or os.getenv('NEO4J_URI', 'neo4j+s://5cbd784c.databases.neo4j.io')
        self.neo4j_username = neo4j_username or os.getenv('NEO4J_USERNAME', 'neo4j')
        self.neo4j_password = neo4j_password or os.getenv('NEO4J_PASSWORD', 'xwsXwnfCdaXWoEbf8uAQGM-F8lq-cLw1ZRkXORcErUQ')

        # Initialize components
        self.sentiment_analyzer = OptimizedSentimentAnalyzer()

        try:
            # Establish database connection
            self.driver = GraphDatabase.driver(
                self.neo4j_uri,
                auth=(self.neo4j_username, self.neo4j_password)
            )
            logger.info("Successfully connected to Neo4j database")

        except Exception as e:
            logger.error(f"Database connection failed: {e}")
            raise

    def process_transcript(self, transcript_path: str):
        """
        Comprehensive transcript processing workflow

        Args:
            transcript_path: Path to the transcript file
        """
        try:
            # Read transcript file
            with open(transcript_path, 'r', encoding='utf-8') as file:
                transcript_text = file.read()

            # Extract conversations
            conversations = TranscriptParser.extract_conversations(transcript_text)

            # Analyze full transcript sentiment
            sentiment_analysis = self.sentiment_analyzer.analyze_transcript(transcript_text)

            # Store results in Neo4j
            with self.driver.session() as session:
                # Create transcript node
                session.run(
                    """
                    CREATE (t:Transcript {
                        overall_sentiment_score: $score,
                        processed_at: datetime(),
                        file_path: $path
                    })
                    """,
                    score=sentiment_analysis['overall_sentiment_score'],
                    path=transcript_path
                )

                # Store conversation segments
                for conversation in conversations:
                    session.run(
                        """
                        MATCH (t:Transcript {file_path: $path})
                        CREATE (c:Conversation {
                            speaker: $speaker,
                            content: $content,
                            timestamp: $timestamp
                        })
                        CREATE (t)-[:HAS_CONVERSATION]->(c)
                        """,
                        path=transcript_path,
                        **conversation
                    )

                # Store sentiment chunks
                for chunk in sentiment_analysis.get('chunk_results', []):
                    session.run(
                        """
                        MATCH (t:Transcript {file_path: $path})
                        CREATE (s:SentimentChunk {
                            text: $text,
                            sentiment: $sentiment,
                            score: $score
                        })
                        CREATE (t)-[:HAS_SENTIMENT_CHUNK]->(s)
                        """,
                        path=transcript_path,
                        **chunk
                    )

            logger.info(f"Successfully processed transcript: {transcript_path}")
            return sentiment_analysis

        except Exception as e:
            logger.error(f"Transcript processing failed: {e}")
            raise

    def close(self):
        """Close database connection"""
        if hasattr(self, 'driver'):
            self.driver.close()
            logger.info("Database connection closed")

def create_gradio_interface():
    """
    Create and launch the Gradio interface for transcript sentiment analysis.
    """
    # Configure logging
    logging.basicConfig(
        level=logging.INFO,
        format='%(asctime)s - %(name)s - %(levelname)s - %(message)s'
    )

    def analyze_transcript(transcript_file):
        """
        Wrapper function for Gradio to process transcript and format results.
        
        Args:
            transcript_file (str): Path to the uploaded transcript file
        
        Returns:
            str: Formatted sentiment analysis results
        """
        try:
            # Ensure file is uploaded
            if transcript_file is None:
                raise gr.Error("Please upload a transcript file.")
            
            # Initialize the transcript processor
            processor = TranscriptProcessor()
            
            # Process the transcript
            results = processor.process_transcript(transcript_file.name)
            
            # Close database connection
            processor.close()
            
            # Format output
            output = []
            
            # Overall sentiment
            output.append(f"🌈 Overall Sentiment Score: {results.get('overall_sentiment_score', 'N/A'):.2f}")
            output.append("\n📊 Sentiment Chunks Analysis:\n")
            
            # Individual chunk results
            for idx, chunk in enumerate(results.get('chunk_results', []), 1):
                output.append(f"Chunk {idx}:")
                output.append(f"  • Sentiment: {chunk.get('sentiment', 'N/A')}")
                output.append(f"  • Score: {chunk.get('score', 'N/A'):.2f}")
                output.append(f"  • Text: {chunk.get('text', 'N/A')[:100]}...\n")
            
            return "\n".join(output)
        
        except Exception as e:
            return f"Error: {str(e)}"

    # Ensure NLTK resources are downloaded
    try:
        nltk.download('punkt', quiet=True)
    except Exception as e:
        logger.warning(f"NLTK download failed: {e}")

    # Create Gradio interface
    with gr.Blocks(title="Transcript Sentiment Analyzer") as demo:
        gr.Markdown("# 📊 Transcript Sentiment Analysis")
        gr.Markdown("Upload a conversation transcript to analyze its sentiment.")
        
        with gr.Row():
            with gr.Column():
                file_input = gr.File(
                    type="filepath", 
                    label="Upload Transcript",
                    file_types=['.txt']
                )
                analyze_btn = gr.Button("Analyze Transcript", variant="primary")
            
            with gr.Column():
                output = gr.Textbox(
                    label="Sentiment Analysis Results", 
                    lines=15,
                    placeholder="Results will appear here..."
                )
        
        # Connect components
        analyze_btn.click(
            fn=analyze_transcript, 
            inputs=file_input, 
            outputs=output
        )

    # Launch the interface
    demo.launch(
        debug=True, 
        show_error=True, 
        server_port=7860,
        share=True  # Creates a public link
    )

if __name__ == "__main__":
    # Ensure NLTK resources are downloaded
    try:
        nltk.download('punkt', quiet=True)
    except Exception as e:
        logger.warning(f"NLTK download failed: {e}")

    # Launch the Gradio interface
    create_gradio_interface()