File size: 10,884 Bytes
2f50c94 b6a2224 37185e0 8d271f0 37185e0 0c3b71f 41f95b2 0707373 41f95b2 0707373 8d271f0 37185e0 0c3b71f b6a2224 0c3b71f b6a2224 e7bb3db 0c3b71f b6a2224 e7bb3db 0c3b71f e7bb3db 0c3b71f e7bb3db 8d271f0 67c2abc 8d271f0 67c2abc 8d271f0 67c2abc 8d271f0 67c2abc 8d271f0 b682b3b 8d271f0 67c2abc 8d271f0 bd877a9 e7bb3db 0c3b71f e7bb3db e50fdf4 0c3b71f e7bb3db 0c3b71f e7bb3db 0c3b71f e7bb3db 0c3b71f e50fdf4 8d271f0 e50fdf4 8d271f0 e50fdf4 c2780b2 0707373 8d271f0 ab5ba21 0707373 bd877a9 ab5ba21 bd877a9 c2780b2 e50fdf4 8d271f0 e50fdf4 8d271f0 e50fdf4 0707373 8d271f0 e50fdf4 4a2f000 8d271f0 0707373 5d4fc94 e50fdf4 0707373 e50fdf4 8d271f0 41f95b2 c2780b2 8d271f0 0707373 e50fdf4 8d271f0 7ea79b0 8d271f0 7ea79b0 8d271f0 7ea79b0 ebcf536 7ea79b0 0c3b71f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 |
import gradio as gr
import requests
import os
import json
class AutonomousEmailAgent:
def __init__(self, linkedin_url, company_name, role, word_limit, user_name, email, phone, linkedin):
self.linkedin_url = linkedin_url
self.company_name = company_name
self.role = role
self.word_limit = word_limit
self.user_name = user_name
self.email = email
self.phone = phone
self.linkedin = linkedin
self.bio = None
self.skills = []
self.experiences = []
self.company_info = None
self.role_description = None
self.company_url = None
# Reason and Act via LLM: Let the LLM control reasoning and actions dynamically
def autonomous_reasoning(self):
print("Autonomous Reasoning: Letting the LLM fully reason and act on available data...")
reasoning_prompt = f"""
You are an autonomous agent responsible for generating a job application email.
Here’s the current data:
- LinkedIn profile: {self.linkedin_url}
- Company Name: {self.company_name}
- Role: {self.role}
- Candidate's Bio: {self.bio}
- Candidate's Skills: {', '.join(self.skills)}
- Candidate's Experiences: {', '.join([exp['title'] for exp in self.experiences])}
- Company Information: {self.company_info}
- Role Description: {self.role_description}
Based on this data, decide if it is sufficient to generate the email. If some information is missing or insufficient, respond with:
1. "scrape" to fetch more data from the company website.
2. "generate_email" to proceed with the email generation.
3. "fallback" to use default values.
After generating the email, reflect on whether the content aligns with the role and company and whether any improvements are needed. Respond clearly with one of the above options.
"""
return self.send_request_to_llm(reasoning_prompt)
# Send request to Groq Cloud LLM with enhanced debugging and error handling
def send_request_to_llm(self, prompt):
print("Sending request to Groq Cloud LLM...")
api_key = os.getenv("GROQ_API_KEY")
if not api_key:
print("Error: API key not found. Please set the GROQ_API_KEY environment variable.")
return "Error: API key not found."
headers = {
"Authorization": f"Bearer {api_key}",
"Content-Type": "application/json"
}
data = {
"model": "llama-3.1-70b-versatile", # Model name
"messages": [{"role": "user", "content": prompt}]
}
response = requests.post("https://api.groq.com/openai/v1/chat/completions", headers=headers, json=data)
print(f"Status Code: {response.status_code}")
if response.status_code == 200:
try:
result = response.json() # Parse the response as JSON
# Check if 'choices' and the content are correctly structured in the response
content = "".join([chunk.get("choices", [{}])[0].get("message", {}).get("content", "") for chunk in result.get("choices", [])])
print(content)
return self.act_on_llm_instructions(content)
except json.JSONDecodeError:
print("Error: Response from Groq Cloud LLM is not valid JSON.")
return "Error: Response is not in JSON format."
else:
print(f"Error: Unable to connect to Groq Cloud LLM. Status Code: {response.status_code}, Response: {response.text}")
return "Error: Unable to generate response."
# Function to act on the LLM's structured instructions
def act_on_llm_instructions(self, reasoning_output):
instruction = reasoning_output.lower().strip()
if "scrape" in instruction:
self.fetch_company_url()
if self.company_url:
self.fetch_company_info_with_firecrawl(self.company_url)
return self.autonomous_reasoning()
elif "generate_email" in instruction:
return self.generate_email()
elif "fallback" in instruction:
print("Action: Using fallback values for missing data.")
if not self.company_info:
self.company_info = "A leading company in its field."
if not self.role_description:
self.role_description = f"The role of {self.role} involves leadership and team management."
return self.generate_email()
else:
print("Error: Unrecognized instruction from LLM. Proceeding with available data.")
return self.generate_email()
# Fetch company URL using SERP API
def fetch_company_url(self):
serp_api_key = os.getenv("SERP_API_KEY")
print(f"Fetching company URL for {self.company_name} using SERP API...")
serp_url = f"https://serpapi.com/search.json?q={self.company_name}&api_key={serp_api_key}&num=1"
response = requests.get(serp_url)
if response.status_code == 200:
serp_data = response.json()
if 'organic_results' in serp_data and len(serp_data['organic_results']) > 0:
self.company_url = serp_data['organic_results'][0]['link']
print(f"Found company URL: {self.company_url}")
else:
print("No URL found for the company via SERP API.")
self.company_url = None
else:
print(f"Error fetching company URL: {response.status_code}")
# Fetch LinkedIn data via Proxycurl
def fetch_linkedin_data(self):
proxycurl_api_key = os.getenv("PROXYCURL_API_KEY")
if not self.linkedin_url:
print("Action: No LinkedIn URL provided, using default bio.")
self.bio = "A professional with diverse experience."
self.skills = ["Adaptable", "Hardworking"]
self.experiences = ["Worked across various industries"]
else:
print("Action: Fetching LinkedIn data via Proxycurl.")
headers = {"Authorization": f"Bearer {proxycurl_api_key}"}
url = f"https://nubela.co/proxycurl/api/v2/linkedin?url={self.linkedin_url}"
response = requests.get(url, headers=headers)
if response.status_code == 200:
data = response.json()
self.bio = data.get("summary", "No bio available")
self.skills = data.get("skills", [])
self.experiences = data.get("experiences", [])
else:
print("Error: Unable to fetch LinkedIn profile. Using default bio.")
self.bio = "A professional with diverse experience."
self.skills = ["Adaptable", "Hardworking"]
self.experiences = ["Worked across various industries"]
# Fetch company information via Firecrawl API using company URL
def fetch_company_info_with_firecrawl(self, company_url):
firecrawl_api_key = os.getenv("FIRECRAWL_API_KEY")
print(f"Fetching company info for {company_url} using Firecrawl.")
headers = {"Authorization": f"Bearer {firecrawl_api_key}"}
firecrawl_url = "https://api.firecrawl.dev/v1/scrape"
data = {"url": company_url, "patterns": ["description", "about", "careers", "company overview"]}
response = requests.post(firecrawl_url, json=data, headers=headers)
if response.status_code == 200:
firecrawl_data = response.json()
self.company_info = firecrawl_data.get("description", "No detailed company info available.")
print(f"Company info fetched: {self.company_info}")
else:
print(f"Error: Unable to fetch company info via Firecrawl. Status code: {response.status_code}")
self.company_info = "A leading company in its field."
# Final Action: Generate the email using Groq Cloud LLM
def generate_email(self):
print("Action: Generating the email using Groq Cloud LLM with the gathered information.")
prompt = f"""
Write a professional job application email applying for the {self.role} position at {self.company_name}.
The email should follow the "Start with Why" approach:
1. **Why**: Explain why the candidate is passionate about this role and company.
2. **How**: Highlight the candidate’s skills and experiences.
3. **What**: Provide examples of past achievements.
4. **Call to Action**: Request a meeting or discussion.
- LinkedIn bio: {self.bio}
- Skills: {', '.join(self.skills)}
- Experience: {', '.join([exp['title'] for exp in self.experiences])}
- Company information: {self.company_info}
Signature:
Best regards,
{self.user_name}
Email: {self.email}
Phone: {self.phone}
LinkedIn: {self.linkedin}
Limit the email to {self.word_limit} words.
"""
return self.send_request_to_llm(prompt)
# Main loop following ReAct pattern
def run(self):
self.fetch_linkedin_data()
return self.autonomous_reasoning()
# Gradio UI setup remains the same
def gradio_ui():
# Input fields
name_input = gr.Textbox(label="Your Name", placeholder="Enter your name")
company_input = gr.Textbox(label="Company Name or URL", placeholder="Enter the company name or website URL")
role_input = gr.Textbox(label="Role Applying For", placeholder="Enter the role you are applying for")
email_input = gr.Textbox(label="Your Email Address", placeholder="Enter your email address")
phone_input = gr.Textbox(label="Your Phone Number", placeholder="Enter your phone number")
linkedin_input = gr.Textbox(label="Your LinkedIn URL", placeholder="Enter your LinkedIn profile URL")
word_limit_slider = gr.Slider(minimum=50, maximum=300, step=10, label="Email Word Limit", value=150)
email_output = gr.Textbox(label="Generated Email", placeholder="Your generated email will appear here", lines=10)
def create_email(name, company_name, role, email, phone, linkedin_url, word_limit):
agent = AutonomousEmailAgent(linkedin_url, company_name, role, word_limit, name, email, phone, linkedin_url)
return agent.run()
demo = gr.Interface(
fn=create_email,
inputs=[name_input, company_input, role_input, email_input, phone_input, linkedin_input, word_limit_slider],
outputs=[email_output],
title="Email Writing AI Agent with ReAct",
description="Generate a professional email for a job application using LinkedIn data, company info, and role description.",
allow_flagging="never"
)
demo.launch()
if __name__ == "__main__":
gradio_ui()
|