Spaces:
Running
Running
File size: 19,977 Bytes
314bf31 0b28455 59084a2 0eb712b 880f9ee 85c9bd6 880f9ee 314bf31 880f9ee 314bf31 6952cd8 314bf31 59084a2 cd9d0c4 59084a2 85c9bd6 314bf31 880f9ee 314bf31 85c9bd6 0b28455 5165383 880f9ee 0b28455 880f9ee 0b28455 880f9ee 5165383 0b28455 880f9ee 5165383 0b28455 5165383 314bf31 85c9bd6 0b28455 880f9ee 0b28455 85c9bd6 314bf31 0b28455 5165383 0b28455 880f9ee 5165383 314bf31 85c9bd6 59084a2 ab98d81 880f9ee ab98d81 59084a2 880f9ee 59084a2 880f9ee 59084a2 85c9bd6 314bf31 880f9ee f745765 85c9bd6 0eb712b 880f9ee 0eb712b f745765 0eb712b f745765 0eb712b 880f9ee 0eb712b 6952cd8 85c9bd6 6952cd8 5165383 880f9ee 5165383 880f9ee 0eb712b 5165383 880f9ee 0eb712b 5165383 880f9ee 5165383 880f9ee 0eb712b 5165383 0b28455 880f9ee 0b28455 59084a2 5165383 59084a2 5165383 880f9ee 5165383 880f9ee 0eb712b 6952cd8 85c9bd6 6952cd8 85c9bd6 880f9ee 5165383 880f9ee 85c9bd6 880f9ee 85c9bd6 880f9ee 85c9bd6 880f9ee 5165383 85c9bd6 0eb712b 5165383 0eb712b 5165383 880f9ee 0eb712b 880f9ee 0eb712b 0b28455 5165383 880f9ee 0eb712b 5165383 880f9ee 0eb712b f745765 85c9bd6 0eb712b 5165383 0eb712b 880f9ee ab98d81 880f9ee ab98d81 5165383 ab98d81 880f9ee 0eb712b 5165383 880f9ee 0eb712b f745765 85c9bd6 ab98d81 880f9ee ab98d81 85c9bd6 f745765 880f9ee 6952cd8 99d9847 f745765 6952cd8 f745765 0eb712b 5165383 0eb712b 880f9ee f745765 0eb712b f745765 0eb712b f745765 5165383 f745765 6952cd8 0eb712b ab98d81 0eb712b 880f9ee f745765 0eb712b f745765 0eb712b f745765 0eb712b f745765 0eb712b ab98d81 0eb712b ab98d81 0eb712b ab98d81 880f9ee f745765 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 |
# app.py
import gradio as gr
from bs4 import BeautifulSoup
import requests
from sentence_transformers import SentenceTransformer
import faiss
import numpy as np
import asyncio
import aiohttp
import re
import base64
import logging
import os
# Import Hugging Face transformers
from transformers import AutoTokenizer, AutoModelForSeq2SeqLM
# Set up logging
logging.basicConfig(filename='app.log', level=logging.INFO,
format='%(asctime)s %(levelname)s %(name)s %(message)s')
logger = logging.getLogger(__name__)
# Initialize models and variables
logger.info("Initializing models and variables")
embedding_model = SentenceTransformer('all-MiniLM-L6-v2')
faiss_index = None
bookmarks = []
fetch_cache = {}
# Define the categories
CATEGORIES = [
"Social Media",
"News and Media",
"Education and Learning",
"Entertainment",
"Shopping and E-commerce",
"Finance and Banking",
"Technology",
"Health and Fitness",
"Travel and Tourism",
"Food and Recipes",
"Sports",
"Arts and Culture",
"Government and Politics",
"Business and Economy",
"Science and Research",
"Personal Blogs and Journals",
"Job Search and Careers",
"Music and Audio",
"Videos and Movies",
"Reference and Knowledge Bases",
"Dead Link",
"Uncategorized",
]
# Load FLAN-T5 model and tokenizer
logger.info("Loading FLAN-T5 model and tokenizer")
tokenizer = AutoTokenizer.from_pretrained('google/flan-t5-small')
model = AutoModelForSeq2SeqLM.from_pretrained('google/flan-t5-small')
# Function to parse bookmarks from HTML
def parse_bookmarks(file_content):
logger.info("Parsing bookmarks")
try:
soup = BeautifulSoup(file_content, 'html.parser')
extracted_bookmarks = []
for link in soup.find_all('a'):
url = link.get('href')
title = link.text.strip()
if url and title:
extracted_bookmarks.append({'url': url, 'title': title})
logger.info(f"Extracted {len(extracted_bookmarks)} bookmarks")
return extracted_bookmarks
except Exception as e:
logger.error("Error parsing bookmarks: %s", e)
raise
# Asynchronous function to fetch URL info
async def fetch_url_info(session, bookmark):
url = bookmark['url']
if url in fetch_cache:
bookmark.update(fetch_cache[url])
return bookmark
try:
logger.info(f"Fetching URL info for: {url}")
async with session.get(url, timeout=5) as response:
bookmark['etag'] = response.headers.get('ETag', 'N/A')
bookmark['status_code'] = response.status
if response.status >= 400:
bookmark['dead_link'] = True
bookmark['description'] = ''
logger.warning(f"Dead link detected: {url} with status {response.status}")
else:
bookmark['dead_link'] = False
content = await response.text()
soup = BeautifulSoup(content, 'html.parser')
# Extract meta description or Open Graph description
meta_description = soup.find('meta', attrs={'name': 'description'})
og_description = soup.find('meta', attrs={'property': 'og:description'})
if og_description and og_description.get('content'):
description = og_description.get('content')
elif meta_description and meta_description.get('content'):
description = meta_description.get('content')
else:
description = ''
bookmark['description'] = description
logger.info(f"Fetched description for {url}")
except Exception as e:
bookmark['dead_link'] = True
bookmark['etag'] = 'N/A'
bookmark['status_code'] = 'N/A'
bookmark['description'] = ''
logger.error(f"Error fetching URL info for {url}: {e}")
finally:
fetch_cache[url] = {
'etag': bookmark.get('etag'),
'status_code': bookmark.get('status_code'),
'dead_link': bookmark.get('dead_link'),
'description': bookmark.get('description'),
}
return bookmark
# Asynchronous processing of bookmarks
async def process_bookmarks_async(bookmarks):
logger.info("Processing bookmarks asynchronously")
try:
async with aiohttp.ClientSession() as session:
tasks = []
for bookmark in bookmarks:
task = asyncio.ensure_future(fetch_url_info(session, bookmark))
tasks.append(task)
await asyncio.gather(*tasks)
logger.info("Completed processing bookmarks asynchronously")
except Exception as e:
logger.error(f"Error in asynchronous processing of bookmarks: {e}")
raise
# Generate summary for a bookmark
def generate_summary(bookmark):
description = bookmark.get('description', '')
if description:
bookmark['summary'] = description
else:
title = bookmark.get('title', '')
if title:
bookmark['summary'] = title
else:
bookmark['summary'] = 'No summary available.'
logger.info(f"Generated summary for bookmark: {bookmark.get('url')}")
return bookmark
# Assign category to a bookmark
def assign_category(bookmark):
if bookmark.get('dead_link'):
bookmark['category'] = 'Dead Link'
logger.info(f"Assigned category 'Dead Link' to bookmark: {bookmark.get('url')}")
return bookmark
summary = bookmark.get('summary', '').lower()
assigned_category = 'Uncategorized'
# Keywords associated with each category
category_keywords = {
"Social Media": ["social media", "networking", "friends", "connect", "posts", "profile"],
"News and Media": ["news", "journalism", "media", "headlines", "breaking news"],
"Education and Learning": ["education", "learning", "courses", "tutorial", "university", "academy", "study"],
"Entertainment": ["entertainment", "movies", "tv shows", "games", "comics", "fun"],
"Shopping and E-commerce": ["shopping", "e-commerce", "buy", "sell", "marketplace", "deals", "store"],
"Finance and Banking": ["finance", "banking", "investment", "money", "economy", "stock", "trading"],
"Technology": ["technology", "tech", "gadgets", "software", "computers", "innovation"],
"Health and Fitness": ["health", "fitness", "medical", "wellness", "exercise", "diet"],
"Travel and Tourism": ["travel", "tourism", "destinations", "hotels", "flights", "vacation"],
"Food and Recipes": ["food", "recipes", "cooking", "cuisine", "restaurant", "dining"],
"Sports": ["sports", "scores", "teams", "athletics", "matches", "leagues"],
"Arts and Culture": ["arts", "culture", "museum", "gallery", "exhibition", "artistic"],
"Government and Politics": ["government", "politics", "policy", "election", "public service"],
"Business and Economy": ["business", "corporate", "industry", "economy", "markets"],
"Science and Research": ["science", "research", "experiment", "laboratory", "study", "scientific"],
"Personal Blogs and Journals": ["blog", "journal", "personal", "diary", "thoughts", "opinions"],
"Job Search and Careers": ["jobs", "careers", "recruitment", "resume", "employment", "hiring"],
"Music and Audio": ["music", "audio", "songs", "albums", "artists", "bands"],
"Videos and Movies": ["video", "movies", "film", "clips", "trailers", "cinema"],
"Reference and Knowledge Bases": ["reference", "encyclopedia", "dictionary", "wiki", "knowledge", "information"],
}
for category, keywords in category_keywords.items():
for keyword in keywords:
if re.search(r'\b' + re.escape(keyword) + r'\b', summary):
assigned_category = category
logger.info(f"Assigned category '{assigned_category}' to bookmark: {bookmark.get('url')}")
break
if assigned_category != 'Uncategorized':
break
bookmark['category'] = assigned_category
if assigned_category == 'Uncategorized':
logger.info(f"No matching category found for bookmark: {bookmark.get('url')}")
return bookmark
# Vectorize summaries and build FAISS index
def vectorize_and_index(bookmarks):
logger.info("Vectorizing summaries and building FAISS index")
try:
summaries = [bookmark['summary'] for bookmark in bookmarks]
embeddings = embedding_model.encode(summaries)
dimension = embeddings.shape[1]
faiss_idx = faiss.IndexFlatL2(dimension)
faiss_idx.add(np.array(embeddings))
logger.info("FAISS index built successfully")
return faiss_idx, embeddings
except Exception as e:
logger.error(f"Error in vectorizing and indexing: {e}")
raise
# Generate HTML display for bookmarks
def display_bookmarks():
logger.info("Generating HTML display for bookmarks")
cards = ''
for i, bookmark in enumerate(bookmarks):
index = i + 1 # Start index at 1
status = "Dead Link" if bookmark.get('dead_link') else "Active"
title = bookmark['title']
url = bookmark['url']
etag = bookmark.get('etag', 'N/A')
summary = bookmark.get('summary', '')
category = bookmark.get('category', 'Uncategorized')
# Apply inline styles for dead links
if bookmark.get('dead_link'):
card_style = "border: 2px solid #D32F2F;"
text_style = "color: #D32F2F;"
else:
card_style = ""
text_style = ""
card_html = f'''
<div class="card" style="{card_style}">
<div class="card-content">
<h3 style="{text_style}">{index}. {title}</h3>
<p style="{text_style}"><strong>Category:</strong> {category}</p>
<p style="{text_style}"><strong>URL:</strong> <a href="{url}" target="_blank" style="{text_style}">{url}</a></p>
<p style="{text_style}"><strong>Status:</strong> {status}</p>
<p style="{text_style}"><strong>ETag:</strong> {etag}</p>
<p style="{text_style}"><strong>Summary:</strong> {summary}</p>
</div>
</div>
'''
cards += card_html
logger.info("HTML display generated")
return cards
# Process the uploaded file
def process_uploaded_file(file):
global bookmarks, faiss_index
logger.info("Processing uploaded file")
if file is None:
logger.warning("No file uploaded")
return "Please upload a bookmarks HTML file.", ''
try:
file_content = file.decode('utf-8')
except UnicodeDecodeError as e:
logger.error(f"Error decoding the file: {e}")
return "Error decoding the file. Please ensure it's a valid HTML file.", ''
try:
bookmarks = parse_bookmarks(file_content)
except Exception as e:
logger.error(f"Error parsing bookmarks: {e}")
return "Error parsing the bookmarks HTML file.", ''
if not bookmarks:
logger.warning("No bookmarks found in the uploaded file")
return "No bookmarks found in the uploaded file.", ''
# Asynchronously fetch bookmark info
try:
asyncio.run(process_bookmarks_async(bookmarks))
except Exception as e:
logger.error(f"Error processing bookmarks asynchronously: {e}")
return "Error processing bookmarks.", ''
# Generate summaries and assign categories
for bookmark in bookmarks:
generate_summary(bookmark)
assign_category(bookmark)
try:
faiss_index, embeddings = vectorize_and_index(bookmarks)
except Exception as e:
logger.error(f"Error building FAISS index: {e}")
return "Error building search index.", ''
message = f"Successfully processed {len(bookmarks)} bookmarks."
logger.info(message)
bookmark_html = display_bookmarks()
return message, bookmark_html
# Chatbot response using Hugging Face model
def chatbot_response(user_query):
if not bookmarks:
logger.warning("No bookmarks available for chatbot")
return "No bookmarks available. Please upload and process your bookmarks first."
logger.info(f"Chatbot received query: {user_query}")
# Prepare the context
try:
# Combine bookmark summaries into context
max_bookmarks = 50 # Adjust as needed
bookmark_context = ""
for idx, bookmark in enumerate(bookmarks[:max_bookmarks]):
bookmark_context += f"{idx+1}. Title: {bookmark['title']}\nSummary: {bookmark['summary']}\n\n"
# Construct the prompt
prompt = f"Based on the following bookmarks, answer the user's query.\n\nUser query: {user_query}\n\nBookmarks:\n{bookmark_context}"
# Generate response
inputs = tokenizer(prompt, return_tensors='pt', max_length=512, truncation=True)
outputs = model.generate(**inputs, max_length=512)
generated_text = tokenizer.decode(outputs[0], skip_special_tokens=True)
logger.info("Chatbot response generated using FLAN-T5 model")
return generated_text.strip()
except Exception as e:
logger.error(f"Error in chatbot response generation: {e}")
return "Error processing your query."
# Edit a bookmark
def edit_bookmark(bookmark_idx, new_title, new_url, new_category):
global faiss_index
try:
bookmark_idx = int(bookmark_idx) - 1 # Adjust index to match list (starting at 0)
if bookmark_idx < 0 or bookmark_idx >= len(bookmarks):
logger.warning(f"Invalid bookmark index for editing: {bookmark_idx + 1}")
return "Invalid bookmark index.", display_bookmarks()
logger.info(f"Editing bookmark at index {bookmark_idx + 1}")
bookmarks[bookmark_idx]['title'] = new_title
bookmarks[bookmark_idx]['url'] = new_url
bookmarks[bookmark_idx]['category'] = new_category
# Re-fetch bookmark info
asyncio.run(process_bookmarks_async([bookmarks[bookmark_idx]]))
generate_summary(bookmarks[bookmark_idx])
# Rebuild the FAISS index
faiss_index, embeddings = vectorize_and_index(bookmarks)
message = "Bookmark updated successfully."
logger.info(message)
updated_html = display_bookmarks()
return message, updated_html
except Exception as e:
logger.error(f"Error editing bookmark: {e}")
return f"Error: {str(e)}", display_bookmarks()
# Delete selected bookmarks
def delete_bookmarks(indices_str):
global faiss_index
try:
indices = [int(idx.strip()) - 1 for idx in indices_str.split(',') if idx.strip().isdigit()]
indices = sorted(indices, reverse=True)
logger.info(f"Deleting bookmarks at indices: {indices}")
for idx in indices:
if 0 <= idx < len(bookmarks):
logger.info(f"Deleting bookmark at index {idx + 1}")
bookmarks.pop(idx)
# Rebuild the FAISS index
if bookmarks:
faiss_index, embeddings = vectorize_and_index(bookmarks)
else:
faiss_index = None
message = "Selected bookmarks deleted successfully."
logger.info(message)
updated_html = display_bookmarks()
return message, updated_html
except Exception as e:
logger.error(f"Error deleting bookmarks: {e}")
return f"Error: {str(e)}", display_bookmarks()
# Export bookmarks to HTML
def export_bookmarks():
if not bookmarks:
logger.warning("No bookmarks to export")
return None
try:
logger.info("Exporting bookmarks to HTML")
# Create an HTML content similar to the imported bookmarks file
soup = BeautifulSoup("<!DOCTYPE NETSCAPE-Bookmark-file-1><Title>Bookmarks</Title><H1>Bookmarks</H1>", 'html.parser')
dl = soup.new_tag('DL')
for bookmark in bookmarks:
dt = soup.new_tag('DT')
a = soup.new_tag('A', href=bookmark['url'])
a.string = bookmark['title']
dt.append(a)
dl.append(dt)
soup.append(dl)
html_content = str(soup)
# Encode the HTML content to base64 for download
b64 = base64.b64encode(html_content.encode()).decode()
href = f'data:text/html;base64,{b64}'
logger.info("Bookmarks exported successfully")
return href
except Exception as e:
logger.error(f"Error exporting bookmarks: {e}")
return None
# Build the Gradio app
def build_app():
logger.info("Building Gradio app")
with gr.Blocks(css="app.css") as demo:
gr.Markdown("<h1>Bookmark Manager App</h1>")
with gr.Tab("Upload and Process Bookmarks"):
upload = gr.File(label="Upload Bookmarks HTML File", type='binary')
process_button = gr.Button("Process Bookmarks")
output_text = gr.Textbox(label="Output")
bookmark_display = gr.HTML(label="Bookmarks")
def update_bookmark_display(file):
return process_uploaded_file(file)
process_button.click(
update_bookmark_display,
inputs=upload,
outputs=[output_text, bookmark_display]
)
with gr.Tab("Chat with Bookmarks"):
user_input = gr.Textbox(label="Ask about your bookmarks")
chat_output = gr.Textbox(label="Chatbot Response")
chat_button = gr.Button("Send")
chat_button.click(
chatbot_response,
inputs=user_input,
outputs=chat_output
)
with gr.Tab("Manage Bookmarks"):
manage_output = gr.Textbox(label="Manage Output")
bookmark_display_manage = gr.HTML(label="Bookmarks")
refresh_button = gr.Button("Refresh Bookmark List")
indices_input = gr.Textbox(label="Bookmark Indices to Delete (comma-separated)")
delete_button = gr.Button("Delete Selected Bookmarks")
export_button = gr.Button("Export Bookmarks")
download_link = gr.HTML(label="Download Exported Bookmarks")
with gr.Row():
index_input = gr.Number(label="Bookmark Index (Starting from 1)", precision=0)
new_title_input = gr.Textbox(label="New Title")
new_url_input = gr.Textbox(label="New URL")
new_category_input = gr.Dropdown(label="New Category", choices=CATEGORIES)
edit_button = gr.Button("Edit Bookmark")
def update_manage_display():
return display_bookmarks()
refresh_button.click(
update_manage_display,
inputs=None,
outputs=bookmark_display_manage
)
edit_button.click(
edit_bookmark,
inputs=[index_input, new_title_input, new_url_input, new_category_input],
outputs=[manage_output, bookmark_display_manage]
)
delete_button.click(
delete_bookmarks,
inputs=indices_input,
outputs=[manage_output, bookmark_display_manage]
)
def provide_download_link():
href = export_bookmarks()
if href:
return f'<a href="{href}" download="bookmarks.html">Download Exported Bookmarks</a>'
else:
return "No bookmarks to export."
export_button.click(
provide_download_link,
inputs=None,
outputs=download_link
)
# Initial load of the bookmarks display
bookmark_display_manage.value = update_manage_display()
logger.info("Launching Gradio app")
demo.launch()
if __name__ == "__main__":
build_app()
|