Spaces:
Running
Running
File size: 29,560 Bytes
dcf746e 3223ff3 dcf746e fe49b51 dcf746e 85c9bd6 61242f1 0e041b2 cdd7269 1e99b99 880f9ee 61242f1 880f9ee 61242f1 cdd7269 61242f1 cdd7269 61242f1 cdd7269 61242f1 314bf31 880f9ee 314bf31 18ec658 e985ab1 314bf31 0e041b2 59084a2 cd9d0c4 59084a2 1e99b99 61242f1 1e99b99 9efe9bb 813f784 9efe9bb 813f784 9efe9bb f42e018 3f6cb23 fb6f5e6 813f784 3f6cb23 fb6f5e6 813f784 fb6f5e6 3f6cb23 813f784 3f6cb23 fb6f5e6 3f6cb23 9efe9bb 3f6cb23 f42e018 3f6cb23 813f784 9efe9bb f42e018 9efe9bb 3f6cb23 fb6f5e6 813f784 3f6cb23 ad8e10f 813f784 3f6cb23 813f784 3f6cb23 813f784 ad8e10f 47ee377 9efe9bb 47ee377 9efe9bb 47ee377 3f6cb23 3b9dc5a 64190a2 3b9dc5a fe49b51 64190a2 47ee377 64190a2 fb6f5e6 3b9dc5a 64190a2 85352fd 64190a2 47ee377 64190a2 3f6cb23 64190a2 0e041b2 64190a2 3b9dc5a 0e041b2 3b9dc5a 64190a2 3b9dc5a 47ee377 8f32801 3b9dc5a 64190a2 3b9dc5a 8f32801 813f784 0e041b2 813f784 b8183dd 813f784 314bf31 fe49b51 b47d5fe fe49b51 b47d5fe 5165383 0e041b2 fe49b51 e44b0c3 fe49b51 370367a fe49b51 0e041b2 370367a b47d5fe 3f6cb23 b47d5fe 370367a 813f784 370367a 3f6cb23 370367a b8183dd 370367a b47d5fe 813f784 b47d5fe 370367a b47d5fe 370367a 1dbb950 fe49b51 47ee377 1dbb950 47ee377 370367a 1dbb950 fe49b51 47ee377 370367a 1dbb950 3f6cb23 370367a 47ee377 370367a 813f784 370367a 813f784 370367a 813f784 370367a 813f784 a3d35f9 813f784 b47d5fe 370367a 3f6cb23 370367a 813f784 370367a b8183dd 813f784 370367a b8183dd 813f784 370367a 813f784 3f6cb23 0e041b2 370367a 0e041b2 f42e018 813f784 3f6cb23 ad8e10f b8183dd 813f784 3f6cb23 813f784 3f6cb23 1dbb950 813f784 370367a 7b16cc6 fe49b51 7b16cc6 6842452 7b16cc6 6842452 7b16cc6 6842452 7b16cc6 6842452 7b16cc6 6842452 7b16cc6 6842452 7b16cc6 6842452 7b16cc6 6842452 7b16cc6 6842452 7b16cc6 64190a2 0e041b2 64190a2 fe49b51 0e041b2 fe49b51 64190a2 fe49b51 7b16cc6 fe49b51 64190a2 6842452 7b16cc6 64190a2 6842452 7b16cc6 6842452 370367a b47d5fe 813f784 b47d5fe 370367a 813f784 6842452 813f784 3f6cb23 6842452 813f784 a3d35f9 813f784 a3d35f9 813f784 6842452 813f784 a3d35f9 813f784 a3d35f9 813f784 a3d35f9 813f784 a3d35f9 813f784 a3d35f9 370367a b8183dd 370367a f745765 3f6cb23 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 |
# app.py
import gradio as gr
from bs4 import BeautifulSoup
from sentence_transformers import SentenceTransformer
import faiss
import numpy as np
import requests
import time
import re
import base64
import logging
import os
import sys
import concurrent.futures
from concurrent.futures import ThreadPoolExecutor
import threading
# Import OpenAI library
import openai
# Set up logging to output to the console
logger = logging.getLogger(__name__)
logger.setLevel(logging.INFO)
# Create a console handler
console_handler = logging.StreamHandler(sys.stdout)
console_handler.setLevel(logging.INFO)
# Create a formatter and set it for the handler
formatter = logging.Formatter('%(asctime)s %(levelname)s %(name)s %(message)s')
console_handler.setFormatter(formatter)
# Add the handler to the logger
logger.addHandler(console_handler)
# Initialize models and variables
logger.info("Initializing models and variables")
embedding_model = SentenceTransformer('all-MiniLM-L6-v2')
faiss_index = None
bookmarks = []
fetch_cache = {}
# Lock for thread-safe operations
lock = threading.Lock()
# Define the categories
CATEGORIES = [
"Social Media",
"News and Media",
"Education and Learning",
"Entertainment",
"Shopping and E-commerce",
"Finance and Banking",
"Technology",
"Health and Fitness",
"Travel and Tourism",
"Food and Recipes",
"Sports",
"Arts and Culture",
"Government and Politics",
"Business and Economy",
"Science and Research",
"Personal Blogs and Journals",
"Job Search and Careers",
"Music and Audio",
"Videos and Movies",
"Reference and Knowledge Bases",
"Dead Link",
"Uncategorized",
]
# Set up Groq Cloud API key and base URL
GROQ_API_KEY = os.getenv('GROQ_API_KEY')
if not GROQ_API_KEY:
logger.error("GROQ_API_KEY environment variable not set.")
openai.api_key = GROQ_API_KEY
openai.api_base = "https://api.groq.com/openai/v1"
def extract_main_content(soup):
"""
Extract the main content from a webpage while filtering out boilerplate content.
"""
if not soup:
return ""
# Remove unwanted elements
for element in soup(['script', 'style', 'header', 'footer', 'nav', 'aside', 'form', 'noscript']):
element.decompose()
# Extract text from <p> tags
p_tags = soup.find_all('p')
if p_tags:
content = ' '.join([p.get_text(strip=True, separator=' ') for p in p_tags])
else:
# Fallback to body content
content = soup.get_text(separator=' ', strip=True)
# Clean up the text
content = re.sub(r'\s+', ' ', content) # Remove multiple spaces
# Truncate content to a reasonable length (e.g., 1500 words)
words = content.split()
if len(words) > 1500:
content = ' '.join(words[:1500])
return content
def get_page_metadata(soup):
"""
Extract metadata from the webpage including title, description, and keywords.
"""
metadata = {
'title': '',
'description': '',
'keywords': ''
}
if not soup:
return metadata
# Get title
title_tag = soup.find('title')
if title_tag and title_tag.string:
metadata['title'] = title_tag.string.strip()
# Get meta description
meta_desc = (
soup.find('meta', attrs={'name': 'description'}) or
soup.find('meta', attrs={'property': 'og:description'}) or
soup.find('meta', attrs={'name': 'twitter:description'})
)
if meta_desc:
metadata['description'] = meta_desc.get('content', '').strip()
# Get meta keywords
meta_keywords = soup.find('meta', attrs={'name': 'keywords'})
if meta_keywords:
metadata['keywords'] = meta_keywords.get('content', '').strip()
# Get OG title if main title is empty
if not metadata['title']:
og_title = soup.find('meta', attrs={'property': 'og:title'})
if og_title:
metadata['title'] = og_title.get('content', '').strip()
return metadata
def generate_summary_and_assign_category(bookmark):
"""
Generate a concise summary and assign a category using a single LLM call.
"""
logger.info(f"Generating summary and assigning category for bookmark: {bookmark.get('url')}")
max_retries = 3
retry_count = 0
while retry_count < max_retries:
try:
html_content = bookmark.get('html_content', '')
# Get the HTML soup object from the bookmark
soup = BeautifulSoup(html_content, 'html.parser')
# Extract metadata and main content
metadata = get_page_metadata(soup)
main_content = extract_main_content(soup)
# Prepare content for the prompt
content_parts = []
if metadata['title']:
content_parts.append(f"Title: {metadata['title']}")
if metadata['description']:
content_parts.append(f"Description: {metadata['description']}")
if metadata['keywords']:
content_parts.append(f"Keywords: {metadata['keywords']}")
if main_content:
content_parts.append(f"Main Content: {main_content}")
content_text = '\n'.join(content_parts)
# Detect insufficient or erroneous content
error_keywords = ['Access Denied', 'Security Check', 'Cloudflare', 'captcha', 'unusual traffic']
if not content_text or len(content_text.split()) < 50:
use_prior_knowledge = True
logger.info(f"Content for {bookmark.get('url')} is insufficient. Instructing LLM to use prior knowledge.")
elif any(keyword.lower() in content_text.lower() for keyword in error_keywords):
use_prior_knowledge = True
logger.info(f"Content for {bookmark.get('url')} contains error messages. Instructing LLM to use prior knowledge.")
else:
use_prior_knowledge = False
# Shortened prompts
if use_prior_knowledge:
prompt = f"""
You are a knowledgeable assistant with up-to-date information as of 2023.
URL: {bookmark.get('url')}
Provide:
1. A concise summary (max two sentences) about this website.
2. Assign the most appropriate category from the list below.
Categories:
{', '.join([f'"{cat}"' for cat in CATEGORIES])}
Format:
Summary: [Your summary]
Category: [One category]
"""
else:
prompt = f"""
You are an assistant that creates concise webpage summaries and assigns categories.
Content:
{content_text}
Provide:
1. A concise summary (max two sentences) focusing on the main topic.
2. Assign the most appropriate category from the list below.
Categories:
{', '.join([f'"{cat}"' for cat in CATEGORIES])}
Format:
Summary: [Your summary]
Category: [One category]
"""
# Estimate tokens
def estimate_tokens(text):
return len(text) / 4 # Approximate token estimation
prompt_tokens = estimate_tokens(prompt)
max_tokens = 150 # Reduced from 200
total_tokens = prompt_tokens + max_tokens
# Calculate required delay
tokens_per_minute = 60000 # Adjust based on your rate limit
tokens_per_second = tokens_per_minute / 60
required_delay = total_tokens / tokens_per_second
sleep_time = max(required_delay, 1)
# Call the LLM via Groq Cloud API
response = openai.ChatCompletion.create(
model='llama-3.1-70b-versatile', # Using the specified model
messages=[
{"role": "user", "content": prompt}
],
max_tokens=int(max_tokens),
temperature=0.5,
)
content = response['choices'][0]['message']['content'].strip()
if not content:
raise ValueError("Empty response received from the model.")
# Parse the response
summary_match = re.search(r"Summary:\s*(.*)", content)
category_match = re.search(r"Category:\s*(.*)", content)
if summary_match:
bookmark['summary'] = summary_match.group(1).strip()
else:
bookmark['summary'] = 'No summary available.'
if category_match:
category = category_match.group(1).strip().strip('"')
if category in CATEGORIES:
bookmark['category'] = category
else:
bookmark['category'] = 'Uncategorized'
else:
bookmark['category'] = 'Uncategorized'
# Simple keyword-based validation (Optional)
summary_lower = bookmark['summary'].lower()
url_lower = bookmark['url'].lower()
if 'social media' in summary_lower or 'twitter' in summary_lower or 'x.com' in url_lower:
bookmark['category'] = 'Social Media'
elif 'wikipedia' in url_lower:
bookmark['category'] = 'Reference and Knowledge Bases'
logger.info("Successfully generated summary and assigned category")
time.sleep(sleep_time)
break # Exit the retry loop upon success
except openai.error.RateLimitError as e:
retry_count += 1
wait_time = int(e.headers.get("Retry-After", 5))
logger.warning(f"Rate limit reached. Waiting for {wait_time} seconds before retrying...")
time.sleep(wait_time)
except Exception as e:
logger.error(f"Error generating summary and assigning category: {e}", exc_info=True)
bookmark['summary'] = 'No summary available.'
bookmark['category'] = 'Uncategorized'
break # Exit the retry loop on other exceptions
def parse_bookmarks(file_content):
"""
Parse bookmarks from HTML file.
"""
logger.info("Parsing bookmarks")
try:
soup = BeautifulSoup(file_content, 'html.parser')
extracted_bookmarks = []
for link in soup.find_all('a'):
url = link.get('href')
title = link.text.strip()
if url and title:
if url.startswith('http://') or url.startswith('https://'):
extracted_bookmarks.append({'url': url, 'title': title})
else:
logger.info(f"Skipping non-http/https URL: {url}")
logger.info(f"Extracted {len(extracted_bookmarks)} bookmarks")
return extracted_bookmarks
except Exception as e:
logger.error("Error parsing bookmarks: %s", e, exc_info=True)
raise
def fetch_url_info(bookmark):
"""
Fetch information about a URL.
"""
url = bookmark['url']
if url in fetch_cache:
with lock:
bookmark.update(fetch_cache[url])
return
try:
logger.info(f"Fetching URL info for: {url}")
headers = {
'User-Agent': 'Mozilla/5.0',
'Accept-Language': 'en-US,en;q=0.9',
}
response = requests.get(url, headers=headers, timeout=5, verify=False, allow_redirects=True)
bookmark['etag'] = response.headers.get('ETag', 'N/A')
bookmark['status_code'] = response.status_code
content = response.text
logger.info(f"Fetched content length for {url}: {len(content)} characters")
# Handle status codes
if response.status_code >= 500:
# Server error, consider as dead link
bookmark['dead_link'] = True
bookmark['description'] = ''
bookmark['html_content'] = ''
logger.warning(f"Dead link detected: {url} with status {response.status_code}")
else:
bookmark['dead_link'] = False
bookmark['html_content'] = content
bookmark['description'] = ''
logger.info(f"Fetched information for {url}")
except requests.exceptions.Timeout:
bookmark['dead_link'] = False # Mark as 'Unknown' instead of 'Dead'
bookmark['etag'] = 'N/A'
bookmark['status_code'] = 'Timeout'
bookmark['description'] = ''
bookmark['html_content'] = ''
bookmark['slow_link'] = True # Custom flag to indicate slow response
logger.warning(f"Timeout while fetching {url}. Marking as 'Slow'.")
except Exception as e:
bookmark['dead_link'] = True
bookmark['etag'] = 'N/A'
bookmark['status_code'] = 'Error'
bookmark['description'] = ''
bookmark['html_content'] = ''
logger.error(f"Error fetching URL info for {url}: {e}", exc_info=True)
finally:
with lock:
fetch_cache[url] = {
'etag': bookmark.get('etag'),
'status_code': bookmark.get('status_code'),
'dead_link': bookmark.get('dead_link'),
'description': bookmark.get('description'),
'html_content': bookmark.get('html_content', ''),
'slow_link': bookmark.get('slow_link', False),
}
def vectorize_and_index(bookmarks_list):
"""
Create vector embeddings for bookmarks and build FAISS index with ID mapping.
"""
logger.info("Vectorizing summaries and building FAISS index")
try:
summaries = [bookmark['summary'] for bookmark in bookmarks_list]
embeddings = embedding_model.encode(summaries)
dimension = embeddings.shape[1]
index = faiss.IndexIDMap(faiss.IndexFlatL2(dimension))
# Assign unique IDs to each bookmark
ids = np.array([bookmark['id'] for bookmark in bookmarks_list], dtype=np.int64)
index.add_with_ids(np.array(embeddings).astype('float32'), ids)
logger.info("FAISS index built successfully with IDs")
return index
except Exception as e:
logger.error(f"Error in vectorizing and indexing: {e}", exc_info=True)
raise
def display_bookmarks():
"""
Generate HTML display for bookmarks.
"""
logger.info("Generating HTML display for bookmarks")
cards = ''
for i, bookmark in enumerate(bookmarks):
index = i + 1
if bookmark.get('dead_link'):
status = "β Dead Link"
card_style = "border: 2px solid red;"
text_style = "color: white;" # Set font color to white
elif bookmark.get('slow_link'):
status = "β³ Slow Response"
card_style = "border: 2px solid orange;"
text_style = "color: white;" # Set font color to white
else:
status = "β
Active"
card_style = "border: 2px solid green;"
text_style = "color: white;" # Set font color to white
title = bookmark['title']
url = bookmark['url']
etag = bookmark.get('etag', 'N/A')
summary = bookmark.get('summary', '')
category = bookmark.get('category', 'Uncategorized')
# Escape HTML content to prevent XSS attacks
from html import escape
title = escape(title)
url = escape(url)
summary = escape(summary)
category = escape(category)
card_html = f'''
<div class="card" style="{card_style} padding: 10px; margin: 10px; border-radius: 5px; background-color: #1e1e1e;">
<div class="card-content">
<h3 style="{text_style}">{index}. {title} {status}</h3>
<p style="{text_style}"><strong>Category:</strong> {category}</p>
<p style="{text_style}"><strong>URL:</strong> <a href="{url}" target="_blank" style="{text_style}">{url}</a></p>
<p style="{text_style}"><strong>ETag:</strong> {etag}</p>
<p style="{text_style}"><strong>Summary:</strong> {summary}</p>
</div>
</div>
'''
cards += card_html
logger.info("HTML display generated")
return cards
def process_uploaded_file(file):
"""
Process the uploaded bookmarks file.
"""
global bookmarks, faiss_index
logger.info("Processing uploaded file")
if file is None:
logger.warning("No file uploaded")
return "Please upload a bookmarks HTML file.", '', gr.update(choices=[]), display_bookmarks()
try:
file_content = file.decode('utf-8')
except UnicodeDecodeError as e:
logger.error(f"Error decoding the file: {e}", exc_info=True)
return "Error decoding the file. Please ensure it's a valid HTML file.", '', gr.update(choices=[]), display_bookmarks()
try:
bookmarks = parse_bookmarks(file_content)
except Exception as e:
logger.error(f"Error parsing bookmarks: {e}", exc_info=True)
return "Error parsing the bookmarks HTML file.", '', gr.update(choices=[]), display_bookmarks()
if not bookmarks:
logger.warning("No bookmarks found in the uploaded file")
return "No bookmarks found in the uploaded file.", '', gr.update(choices=[]), display_bookmarks()
# Assign unique IDs to bookmarks
for idx, bookmark in enumerate(bookmarks):
bookmark['id'] = idx
# Fetch bookmark info concurrently
logger.info("Fetching URL info concurrently")
with ThreadPoolExecutor(max_workers=20) as executor:
executor.map(fetch_url_info, bookmarks)
# Process bookmarks concurrently with LLM calls
logger.info("Processing bookmarks with LLM concurrently")
with ThreadPoolExecutor(max_workers=5) as executor:
executor.map(generate_summary_and_assign_category, bookmarks)
try:
faiss_index = vectorize_and_index(bookmarks)
except Exception as e:
logger.error(f"Error building FAISS index: {e}", exc_info=True)
return "Error building search index.", '', gr.update(choices=[]), display_bookmarks()
message = f"β
Successfully processed {len(bookmarks)} bookmarks."
logger.info(message)
# Generate displays and updates
bookmark_html = display_bookmarks()
choices = [f"{i+1}. {bookmark['title']} (Category: {bookmark['category']})"
for i, bookmark in enumerate(bookmarks)]
return message, bookmark_html, gr.update(choices=choices), bookmark_html
def delete_selected_bookmarks(selected_indices):
"""
Delete selected bookmarks and remove their vectors from the FAISS index.
"""
global bookmarks, faiss_index
if not selected_indices:
return "β οΈ No bookmarks selected.", gr.update(choices=[]), display_bookmarks()
ids_to_delete = []
indices_to_delete = []
for s in selected_indices:
idx = int(s.split('.')[0]) - 1
if 0 <= idx < len(bookmarks):
bookmark_id = bookmarks[idx]['id']
ids_to_delete.append(bookmark_id)
indices_to_delete.append(idx)
logger.info(f"Deleting bookmark at index {idx + 1}")
# Remove vectors from FAISS index
if faiss_index is not None and ids_to_delete:
faiss_index.remove_ids(np.array(ids_to_delete, dtype=np.int64))
# Remove bookmarks from the list (reverse order to avoid index shifting)
for idx in sorted(indices_to_delete, reverse=True):
bookmarks.pop(idx)
message = "ποΈ Selected bookmarks deleted successfully."
logger.info(message)
choices = [f"{i+1}. {bookmark['title']} (Category: {bookmark['category']})"
for i, bookmark in enumerate(bookmarks)]
return message, gr.update(choices=choices), display_bookmarks()
def edit_selected_bookmarks_category(selected_indices, new_category):
"""
Edit category of selected bookmarks.
"""
if not selected_indices:
return "β οΈ No bookmarks selected.", gr.update(choices=[]), display_bookmarks()
if not new_category:
return "β οΈ No new category selected.", gr.update(choices=[]), display_bookmarks()
indices = [int(s.split('.')[0])-1 for s in selected_indices]
for idx in indices:
if 0 <= idx < len(bookmarks):
bookmarks[idx]['category'] = new_category
logger.info(f"Updated category for bookmark {idx + 1} to {new_category}")
message = "βοΈ Category updated for selected bookmarks."
logger.info(message)
# Update choices and display
choices = [f"{i+1}. {bookmark['title']} (Category: {bookmark['category']})"
for i, bookmark in enumerate(bookmarks)]
return message, gr.update(choices=choices), display_bookmarks()
def export_bookmarks():
"""
Export bookmarks to an HTML file.
"""
if not bookmarks:
logger.warning("No bookmarks to export")
return None # Return None instead of a message
try:
logger.info("Exporting bookmarks to HTML")
soup = BeautifulSoup("<!DOCTYPE NETSCAPE-Bookmark-file-1><Title>Bookmarks</Title><H1>Bookmarks</H1>", 'html.parser')
dl = soup.new_tag('DL')
for bookmark in bookmarks:
dt = soup.new_tag('DT')
a = soup.new_tag('A', href=bookmark['url'])
a.string = bookmark['title']
dt.append(a)
dl.append(dt)
soup.append(dl)
html_content = str(soup)
# Save to a temporary file
output_file = "exported_bookmarks.html"
with open(output_file, 'w', encoding='utf-8') as f:
f.write(html_content)
logger.info("Bookmarks exported successfully")
return output_file # Return the file path
except Exception as e:
logger.error(f"Error exporting bookmarks: {e}", exc_info=True)
return None # Return None in case of error
def chatbot_response(user_query, chat_history):
"""
Generate chatbot response using the FAISS index and embeddings, maintaining chat history.
"""
if not bookmarks or faiss_index is None:
logger.warning("No bookmarks available for chatbot")
chat_history.append((user_query, "β οΈ No bookmarks available. Please upload and process your bookmarks first."))
return chat_history
logger.info(f"Chatbot received query: {user_query}")
try:
# Encode the user query
query_vector = embedding_model.encode([user_query]).astype('float32')
# Search the FAISS index
k = 5 # Number of results to return
distances, ids = faiss_index.search(query_vector, k)
ids = ids.flatten()
# Retrieve the bookmarks
id_to_bookmark = {bookmark['id']: bookmark for bookmark in bookmarks}
matching_bookmarks = [id_to_bookmark.get(id) for id in ids if id in id_to_bookmark]
if not matching_bookmarks:
answer = "No relevant bookmarks found for your query."
chat_history.append((user_query, answer))
return chat_history
# Format the response
bookmarks_info = "\n".join([
f"Title: {bookmark['title']}\nURL: {bookmark['url']}\nSummary: {bookmark['summary']}"
for bookmark in matching_bookmarks
])
# Use the LLM via Groq Cloud API to generate a response
prompt = f"""
A user asked: "{user_query}"
Based on the bookmarks below, provide a helpful answer to the user's query, referencing the relevant bookmarks.
Bookmarks:
{bookmarks_info}
Provide a concise and helpful response.
"""
# Estimate tokens
def estimate_tokens(text):
return len(text) / 4 # Approximate token estimation
prompt_tokens = estimate_tokens(prompt)
max_tokens = 300 # Adjust as needed
total_tokens = prompt_tokens + max_tokens
# Calculate required delay
tokens_per_minute = 60000 # Adjust based on your rate limit
tokens_per_second = tokens_per_minute / 60
required_delay = total_tokens / tokens_per_second
sleep_time = max(required_delay, 1)
response = openai.ChatCompletion.create(
model='llama-3.1-70b-versatile', # Using the specified model
messages=[
{"role": "user", "content": prompt}
],
max_tokens=int(max_tokens),
temperature=0.7,
)
answer = response['choices'][0]['message']['content'].strip()
logger.info("Chatbot response generated")
time.sleep(sleep_time)
# Append the interaction to chat history
chat_history.append((user_query, answer))
return chat_history
except openai.error.RateLimitError as e:
wait_time = int(e.headers.get("Retry-After", 5))
logger.warning(f"Rate limit reached. Waiting for {wait_time} seconds before retrying...")
time.sleep(wait_time)
return chatbot_response(user_query, chat_history) # Retry after waiting
except Exception as e:
error_message = f"β οΈ Error processing your query: {str(e)}"
logger.error(error_message, exc_info=True)
chat_history.append((user_query, error_message))
return chat_history
def build_app():
"""
Build and launch the Gradio app.
"""
try:
logger.info("Building Gradio app")
with gr.Blocks(css="app.css") as demo:
# General Overview
gr.Markdown("""
# π SmartMarks - AI Browser Bookmarks Manager
Welcome to **SmartMarks**, your intelligent assistant for managing browser bookmarks. SmartMarks leverages AI to help you organize, search, and interact with your bookmarks seamlessly.
---
## π **How to Use SmartMarks**
SmartMarks is divided into three main sections:
1. **π Upload and Process Bookmarks:** Import your existing bookmarks and let SmartMarks analyze and categorize them for you.
2. **π¬ Chat with Bookmarks:** Interact with your bookmarks using natural language queries to find relevant links effortlessly.
3. **π οΈ Manage Bookmarks:** View, edit, delete, and export your bookmarks with ease.
""")
# Upload and Process Bookmarks Tab
with gr.Tab("Upload and Process Bookmarks"):
gr.Markdown("""
## π **Upload and Process Bookmarks**
### π **Steps:**
1. Click on the "Upload Bookmarks HTML File" button
2. Select your bookmarks file
3. Click "Process Bookmarks" to analyze and organize your bookmarks
""")
upload = gr.File(label="π Upload Bookmarks HTML File", type='binary')
process_button = gr.Button("βοΈ Process Bookmarks")
output_text = gr.Textbox(label="β
Output", interactive=False)
bookmark_display = gr.HTML(label="π Processed Bookmarks")
# Chat with Bookmarks Tab
with gr.Tab("Chat with Bookmarks"):
gr.Markdown("""
## π¬ **Chat with Bookmarks**
Ask questions about your bookmarks and get relevant results.
""")
chatbot = gr.Chatbot(label="π¬ Chat with SmartMarks")
user_input = gr.Textbox(
label="βοΈ Ask about your bookmarks",
placeholder="e.g., Do I have any bookmarks about AI?"
)
chat_button = gr.Button("π¨ Send")
# Manage Bookmarks Tab
with gr.Tab("Manage Bookmarks"):
gr.Markdown("""
## π οΈ **Manage Bookmarks**
Select bookmarks to delete or edit their categories.
""")
manage_output = gr.Textbox(label="π Status", interactive=False)
bookmark_selector = gr.CheckboxGroup(
label="β
Select Bookmarks",
choices=[]
)
new_category = gr.Dropdown(
label="π New Category",
choices=CATEGORIES,
value="Uncategorized"
)
bookmark_display_manage = gr.HTML(label="π Bookmarks")
with gr.Row():
delete_button = gr.Button("ποΈ Delete Selected")
edit_category_button = gr.Button("βοΈ Edit Category")
export_button = gr.Button("πΎ Export")
download_link = gr.File(label="π₯ Download Exported Bookmarks")
# Set up event handlers
process_button.click(
process_uploaded_file,
inputs=upload,
outputs=[output_text, bookmark_display, bookmark_selector, bookmark_display_manage]
)
chat_button.click(
chatbot_response,
inputs=[user_input, chatbot],
outputs=chatbot
)
delete_button.click(
delete_selected_bookmarks,
inputs=bookmark_selector,
outputs=[manage_output, bookmark_selector, bookmark_display_manage]
)
edit_category_button.click(
edit_selected_bookmarks_category,
inputs=[bookmark_selector, new_category],
outputs=[manage_output, bookmark_selector, bookmark_display_manage]
)
export_button.click(
export_bookmarks,
outputs=download_link
)
logger.info("Launching Gradio app")
demo.launch(debug=True)
except Exception as e:
logger.error(f"Error building the app: {e}", exc_info=True)
print(f"Error building the app: {e}")
if __name__ == "__main__":
build_app()
|