Spaces:
Build error
Build error
File size: 1,072 Bytes
0cb63a7 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 |
import streamlit as st
import pickle
import string
from nltk.stem.porter import PorterStemmer
import nltk
from nltk.corpus import stopwords
ps=PorterStemmer()
def transform_text(text):
text=text.lower()
text=nltk.word_tokenize(text)
y=[]
for i in text:
if i.isalnum():
y.append(i)
text=y[:]
y.clear()
for i in text:
if i not in stopwords.words('english') and i not in string.punctuation:
y.append(i)
text=y[:]
y.clear()
for i in text:
y.append(ps.stem(i))
return " ".join(y)
tfidf=pickle.load(open('vectorizer.pkl','rb'))
model=pickle.load(open('model.pkl','rb'))
st.title("Email/ Sms spam Classifier")
input_sms = st.text_area("Enter the message")
if st.button('Predict'):
# 1. Preprocess
transformed_sms = transform_text(input_sms)
# 2. Vectorize
vector_input= tfidf.transform([transformed_sms])
# 3. Predict
result = model.predict(vector_input)[0]
# 4. Display
if result == 1:
st.header("Spam")
else:
st.header("Not Spam")
|