Spaces:
Paused
Paused
File size: 11,615 Bytes
824afbf |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 |
from __future__ import annotations
from functools import partial
from contextlib import nullcontext
from typing import List, Tuple
from math import ceil
import torch as T
import torch.nn as nn
import torch.nn.functional as F
import torch.distributed as dist
from torch import Tensor, int32
from torch.amp import autocast
from einops import rearrange, pack, unpack
from utils import si_module, exists, default, maybe
@si_module
class GaussianMixtureIOLayer(nn.Module):
class Config:
latent_dim: int
dim: int
num_components: int
def __init__(self, c: Config):
super().__init__()
self.latent_dim = c.latent_dim
self.num_components = c.num_components
self.input_projection = nn.Linear(c.latent_dim, c.dim)
self.fc_loc = nn.Linear(c.dim, c.num_components * c.latent_dim)
self.fc_scale = nn.Linear(c.dim, c.num_components * c.latent_dim)
self.fc_weight = nn.Linear(c.dim, c.num_components)
def _square_plus(self, x):
return (x + T.sqrt(T.square(x) + 4)) / 2
def input(self, sampled_latents: T.Tensor) -> T.Tensor:
"""Pre-sampled latents T.Tensor (B, L, Z) -> float tensor (B, L, D)"""
hidden = self.input_projection(sampled_latents)
return hidden
def output(self, h: T.Tensor) -> Tuple[T.Tensor, T.Tensor, T.Tensor]:
"""float tensor (B, L, D) -> Tuple of locs, scales, and weights"""
batch_size, seq_len, _ = h.shape
locs = self.fc_loc(h).view(batch_size, seq_len, self.num_components, self.latent_dim)
scales = T.clamp(self._square_plus(self.fc_scale(h)), min=1e-6).view(batch_size, seq_len, self.num_components, self.latent_dim)
weights = self.fc_weight(h).view(batch_size, seq_len, self.num_components)
return (locs, scales, weights)
def loss(self, data, dataHat):
locs, scales, weights = dataHat
log_probs = -0.5 * T.sum(
(data.unsqueeze(-2) - locs).pow(2) / scales.pow(2) +
2 * T.log(scales) +
T.log(T.tensor(2 * T.pi)),
dim=-1
)
log_weights = F.log_softmax(weights, dim=-1)
return -T.logsumexp(log_weights + log_probs, dim=-1)
def temp_sample(self, orig_pdist, temp):
locs, scales, weights = orig_pdist
if temp is None:
component_samples = locs + scales * T.randn_like(scales)
mixture_samples = F.gumbel_softmax(weights, hard=True)
sampled = (component_samples * mixture_samples.unsqueeze(-1)).sum(dim=-2)
elif isinstance(temp, tuple):
assert len(temp) == 2
categorical_temp, gaussian_temp = temp
component_samples = locs + scales * gaussian_temp * T.randn_like(scales)
mixture_samples = F.gumbel_softmax(weights / categorical_temp, hard=True)
sampled = (component_samples * mixture_samples.unsqueeze(-1)).sum(dim=-2)
else:
component_samples = locs + scales * temp * T.randn_like(scales)
mixture_samples = F.gumbel_softmax(weights / temp, hard=True)
sampled = (component_samples * mixture_samples.unsqueeze(-1)).sum(dim=-2)
return sampled
class GPTOutput(nn.Module):
def __init__(self, dim, vocab_size):
super().__init__()
self.output = nn.Linear(dim, vocab_size, bias=False)
def forward(self, x):
return self.output(x)
# helper functions
def pack_one(t, pattern):
return pack([t], pattern)
def unpack_one(t, ps, pattern):
return unpack(t, ps, pattern)[0]
def first(l):
return l[0]
def round_up_multiple(num, mult):
return ceil(num / mult) * mult
def get_code_utilization(codes, codebook_size, get_global=False):
if get_global and dist.is_initialized():
world_size = dist.get_world_size()
else:
world_size = 1
if world_size > 1:
gathered_tokens = [T.zeros_like(codes) for _ in range(world_size)]
dist.all_gather(gathered_tokens, codes)
gathered_tokens = T.cat(gathered_tokens, dim=0)
else:
gathered_tokens = codes
unique_tokens = len(T.unique(gathered_tokens))
code_utilization = unique_tokens / min(gathered_tokens.numel(), codebook_size)
return code_utilization
# tensor helpers
def round_ste(z: Tensor) -> Tensor:
"""Round with straight through gradients."""
zhat = z.round()
return z + (zhat - z).detach()
# main class
# lucidrains fsq
@si_module
class FSQ(nn.Module):
@property
def needs_float32_params(self):
return True
class Config:
levels: List[int]
dim: int | None = None
num_codebooks: int = 1
keep_num_codebooks_dim: bool | None = None
scale: float | None = None
allowed_dtypes: Tuple[str, ...] = ('float32', 'float64')
channel_first: bool = False
projection_has_bias: bool = True
return_indices: bool = True
force_quantization_f32: bool = True
use_rms: bool = False
def __init__(self, c: Config):
super().__init__()
_levels = T.tensor(c.levels, dtype=int32)
self.register_buffer("_levels", _levels, persistent = False)
_basis = T.cumprod(T.tensor([1] + c.levels[:-1]), dim=0, dtype=int32)
self.register_buffer("_basis", _basis, persistent = False)
self.scale = c.scale
codebook_dim = len(c.levels)
self.codebook_dim = codebook_dim
effective_codebook_dim = codebook_dim * c.num_codebooks
self.num_codebooks = c.num_codebooks
self.allowed_dtypes = []
for dtype_str in c.allowed_dtypes:
if hasattr(T, dtype_str):
self.allowed_dtypes.append(getattr(T, dtype_str))
else:
raise ValueError(f"Invalid dtype string: {dtype_str}")
self.effective_codebook_dim = effective_codebook_dim
keep_num_codebooks_dim = default(c.keep_num_codebooks_dim, c.num_codebooks > 1)
assert not (c.num_codebooks > 1 and not keep_num_codebooks_dim)
self.keep_num_codebooks_dim = keep_num_codebooks_dim
self.dim = default(c.dim, len(_levels) * c.num_codebooks)
self.channel_first = c.channel_first
has_projections = self.dim != effective_codebook_dim
self.project_in = nn.Linear(self.dim, effective_codebook_dim, bias = c.projection_has_bias) if has_projections else nn.Identity()
self.project_out = nn.Linear(effective_codebook_dim, self.dim, bias = c.projection_has_bias) if has_projections else nn.Identity()
self.has_projections = has_projections
self.return_indices = c.return_indices
if c.return_indices:
self.codebook_size = self._levels.prod().item()
implicit_codebook = self._indices_to_codes(T.arange(self.codebook_size))
self.register_buffer("implicit_codebook", implicit_codebook, persistent = False)
self.allowed_dtypes = c.allowed_dtypes
self.force_quantization_f32 = c.force_quantization_f32
self.latent_loss = None
def latent_metric(self, codes, get_global=False):
return {'code_util_estimate': get_code_utilization(codes, self.codebook_size, get_global)}
def repr_from_latent(self, latent):
return self.indices_to_codes(latent)
def bound(self, z, eps: float = 1e-3):
""" Bound `z`, an array of shape (..., d). """
half_l = (self._levels - 1) * (1 + eps) / 2
offset = T.where(self._levels % 2 == 0, 0.5, 0.0)
shift = (offset / half_l).atanh()
return (z + shift).tanh() * half_l - offset
def quantize(self, z):
""" Quantizes z, returns quantized zhat, same shape as z. """
quantized = round_ste(self.bound(z))
half_width = self._levels // 2 # Renormalize to [-1, 1].
return quantized / half_width
def _scale_and_shift(self, zhat_normalized):
half_width = self._levels // 2
return (zhat_normalized * half_width) + half_width
def _scale_and_shift_inverse(self, zhat):
half_width = self._levels // 2
return (zhat - half_width) / half_width
def _indices_to_codes(self, indices):
level_indices = self.indices_to_level_indices(indices)
codes = self._scale_and_shift_inverse(level_indices)
return codes
def codes_to_indices(self, zhat):
""" Converts a `code` to an index in the codebook. """
assert zhat.shape[-1] == self.codebook_dim
zhat = self._scale_and_shift(zhat)
return (zhat * self._basis).sum(dim=-1).to(int32)
def indices_to_level_indices(self, indices):
""" Converts indices to indices at each level, perhaps needed for a transformer with factorized embeddings """
indices = rearrange(indices, '... -> ... 1')
codes_non_centered = (indices // self._basis) % self._levels
return codes_non_centered
def indices_to_codes(self, indices):
""" Inverse of `codes_to_indices`. """
assert exists(indices)
is_img_or_video = indices.ndim >= (3 + int(self.keep_num_codebooks_dim))
codes = self._indices_to_codes(indices)
if self.keep_num_codebooks_dim:
codes = rearrange(codes, '... c d -> ... (c d)')
codes = self.project_out(codes)
if is_img_or_video or self.channel_first:
codes = rearrange(codes, 'b ... d -> b d ...')
return codes
# @autocast(device_type='cuda', enabled = False)
def forward(self, z, return_codes=False):
"""
einstein notation
b - batch
n - sequence (or flattened spatial dimensions)
d - feature dimension
c - number of codebook dim
"""
is_img_or_video = z.ndim >= 4
need_move_channel_last = is_img_or_video or self.channel_first
# standardize image or video into (batch, seq, dimension)
if need_move_channel_last:
z = rearrange(z, 'b d ... -> b ... d')
z, ps = pack_one(z, 'b * d')
assert z.shape[-1] == self.dim, f'expected dimension of {self.dim} but found dimension of {z.shape[-1]}'
z = self.project_in(z)
z = rearrange(z, 'b n (c d) -> b n c d', c = self.num_codebooks)
# whether to force quantization step to be full precision or not
force_f32 = self.force_quantization_f32
quantization_context = partial(autocast, device_type='cuda', enabled = False) if force_f32 else nullcontext
with quantization_context():
orig_dtype = z.dtype
if force_f32 and orig_dtype not in self.allowed_dtypes:
z = z.float()
codes = self.quantize(z)
# returning indices could be optional
indices = None
if self.return_indices:
indices = self.codes_to_indices(codes)
codes = rearrange(codes, 'b n c d -> b n (c d)')
codes = codes.type(orig_dtype)
# project out
if return_codes:
return codes, indices
out = self.project_out(codes)
# reconstitute image or video dimensions
if need_move_channel_last:
out = unpack_one(out, ps, 'b * d')
out = rearrange(out, 'b ... d -> b d ...')
indices = maybe(unpack_one)(indices, ps, 'b * c')
if not self.keep_num_codebooks_dim and self.return_indices:
indices = maybe(rearrange)(indices, '... 1 -> ...')
# return quantized output and indices
return out, indices |