Spaces:
Runtime error
Runtime error
File size: 9,529 Bytes
ad48e75 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 |
# Copyright 2023 (authors: Feiteng Li)
#
# See ../../../../LICENSE for clarification regarding multiple authors
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
modified from lhoste.dataset.speech_synthesis.py
"""
import torch
import math
import h5py
from tokenizers import Tokenizer
from typing import Union, List
import numpy as np
from tqdm import tqdm
_pad = '_'
_punctuation = ',.!?-~…'
_letters = 'NQabdefghijklmnopstuvwxyzɑæʃʑçɯɪɔɛɹðəɫɥɸʊɾʒθβŋɦ⁼ʰ`^#*=ˈˌ→↓↑ '
symbols = [_pad] + list(_punctuation) + list(_letters)
language_dict = {
'en': 0,
'zh': 1,
'ja': 2,
}
def seq2phone(tokens: Union[List, np.ndarray]):
"""
Convert tokenized phoneme ID sequence back to phoneme string
:param tokens: phoneme tokens
:return: recovered phoneme sequence
"""
phones = "".join([symbols[i] for i in tokens])
return phones
class DynamicBatchSampler(torch.utils.data.Sampler):
def __init__(self, sampler, num_tokens_fn, num_buckets=100, min_size=0, max_size=1000,
max_tokens=None, max_sentences=None, drop_last=False):
"""
:param sampler:
:param num_tokens_fn: 根据idx返回样本的长度的函数
:param num_buckets: 利用桶原理将相似长度的样本放在一个batchsize中,桶的数量
:param min_size: 最小长度的样本, 小于这个值的样本会被过滤掉。 依据这个值来创建样桶
:param max_size: 最大长度的样本
:param max_sentences: batch_size, 但是这里可以通过max_sentences 和 max_tokens 共同控制最终的大小
"""
super(DynamicBatchSampler, self).__init__(sampler)
self.sampler = sampler
self.num_tokens_fn = num_tokens_fn
self.num_buckets = num_buckets
self.min_size = min_size
self.max_size = max_size
assert max_size <= max_tokens, "max_size should be smaller than max tokens"
assert max_tokens is not None or max_sentences is not None, \
"max_tokens and max_sentences should not be null at the same time, please specify one parameter at least"
self.max_tokens = max_tokens if max_tokens is not None else float('Inf')
self.max_sentences = max_sentences if max_sentences is not None else float('Inf')
self.drop_last = drop_last
def set_epoch(self, epoch):
self.sampler.set_epoch(epoch)
def is_batch_full(self, num_tokens, batch):
if len(batch) == 0:
return False
if len(batch) == self.max_sentences:
return True
if num_tokens > self.max_tokens:
return True
return False
def __iter__(self):
buckets = [[] for _ in range(self.num_buckets)]
sample_len = [0] * self.num_buckets
for idx in self.sampler:
idx_length = self.num_tokens_fn(idx)
if not (self.min_size <= idx_length <= self.max_size):
print("sentence at index {} of size {} exceeds max_tokens, the sentence is ignored".format(idx, idx_length))
continue
index_buckets = math.floor((idx_length - self.min_size) / (self.max_size - self.min_size + 1)
* self.num_buckets)
sample_len[index_buckets] = max(sample_len[index_buckets], idx_length)
num_tokens = (len(buckets[index_buckets]) + 1) * sample_len[index_buckets]
if self.is_batch_full(num_tokens, buckets[index_buckets]):
# yield this batch
yield buckets[index_buckets]
buckets[index_buckets] = []
sample_len[index_buckets] = 0
buckets[index_buckets].append(idx)
# process left-over
leftover_batch = []
leftover_sample_len = 0
leftover = [idx for bucket in buckets for idx in bucket]
for idx in leftover:
idx_length = self.num_tokens_fn(idx)
leftover_sample_len = max(leftover_sample_len, idx_length)
num_tokens = (len(leftover_batch) + 1) * leftover_sample_len
if self.is_batch_full(num_tokens, leftover_batch):
yield leftover_batch
leftover_batch = []
leftover_sample_len = 0
leftover_batch.append(idx)
if len(leftover_batch) > 0 and not self.drop_last:
yield leftover_batch
def __len__(self):
# we do not know the exactly batch size, so do not call len(dataloader)
pass
class AudioDataset(torch.utils.data.Dataset):
def __init__(self, h5_path, ann_path, tokenizer_path):
self.h5_path = h5_path
with open(ann_path, 'r', encoding='utf-8') as f:
lines = f.readlines()
ls = [l.split("|") for l in lines]
ls_T = list(zip(*ls))
del ls_T[-1]
self.h5_paths, self.durations, self.langs, self.texts = \
list(ls_T[0]), list(ls_T[1]), list(ls_T[2]), list(ls_T[3])
self.durations = [float(dur) for dur in self.durations]
self.tokenizer = Tokenizer.from_file(tokenizer_path)
self._archive = None
def __len__(self):
return len(self.h5_paths)
def get_dur(self, idx):
return self.durations[idx]
@property
def archive(self):
if self._archive is None: # lazy loading here!
self._archive = h5py.File(self.h5_path, "r")
return self._archive
def __getitem__(self, idx):
archive = self.archive
h5_path = self.h5_paths[idx]
sub = archive[h5_path]
audio_tokens = sub['audio'][()]
phone_tokens = sub['text'][()]
dur = self.durations[idx]
lang = self.langs[idx]
text = self.texts[idx]
# tokenization should be done within dataloader
phones = seq2phone(phone_tokens)
phones = phones.replace(" ", "_")
if not len(phones):
cptpho_tokens = self.tokenizer.encode(text).ids
else:
cptpho_tokens = self.tokenizer.encode(phones).ids
assert len(cptpho_tokens)
return {
'utt_id': h5_path,
'text': text,
'audio': None,
'audio_lens': None,
'audio_features': audio_tokens,
'audio_features_lens': len(audio_tokens.T),
'text_tokens': np.array(cptpho_tokens),
'text_tokens_lens': len(cptpho_tokens),
'language': language_dict[lang],
}
def collate(batch):
utt_id_s = [b['utt_id'] for b in batch]
text_s = [b['text'] for b in batch]
audio_s = [b['audio'] for b in batch]
audio_lens_s = [b['audio_lens'] for b in batch]
audio_features_lens_s = [b['audio_features_lens'] for b in batch]
# create an empty tensor with maximum audio feature length
audio_features_s = torch.zeros([len(batch), max(audio_features_lens_s), 8], dtype=torch.int64) - 1 # audio pad with -1
text_tokens_lens_s = [b['text_tokens_lens'] for b in batch]
# create an empty tensor with maximum text tokens length
text_tokens_s = torch.zeros([len(batch), max(text_tokens_lens_s)], dtype=torch.int64) + 3 # [PAD] token id 3
language_s = [b['language'] for b in batch]
for i, b in enumerate(batch):
audio_features = b['audio_features']
audio_features_lens = b['audio_features_lens']
audio_features_s[i, :audio_features_lens, :] = torch.LongTensor(audio_features.T)
text_tokens = b['text_tokens']
text_tokens_lens = b['text_tokens_lens']
text_tokens_s[i, :text_tokens_lens] = torch.LongTensor(text_tokens)
batch = {
'utt_id': utt_id_s,
'text': text_s,
'audio': audio_s,
'audio_lens': audio_lens_s,
'audio_features': audio_features_s,
'audio_features_lens': torch.LongTensor(np.array(audio_features_lens_s)),
'text_tokens': text_tokens_s,
'text_tokens_lens': torch.LongTensor(np.array(text_tokens_lens_s)),
'languages': torch.LongTensor(np.array(language_s)),
}
return batch
def create_dataloader(data_dir="/root/valle/egs/mix", n_gpus=1, rank=0, num_workers=0, num_buckets=10, max_duration=120):
train_dataset = AudioDataset(h5_path=f"{data_dir}/audio_sum.hdf5",
ann_path=f"{data_dir}/audio_ann_sum.txt",
tokenizer_path=f"{data_dir}/bpe_69.json")
ran_sampler = torch.utils.data.distributed.DistributedSampler(
train_dataset,
num_replicas=n_gpus,
rank=rank,
shuffle=True,
)
dynamic_sampler = DynamicBatchSampler(ran_sampler, train_dataset.get_dur, num_buckets=num_buckets, max_size=20,
max_tokens=max_duration)
train_loader = torch.utils.data.DataLoader(train_dataset, num_workers=num_workers, collate_fn=collate,
batch_sampler=dynamic_sampler)
return train_loader
|