Spaces:
Runtime error
Runtime error
File size: 2,449 Bytes
ad48e75 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 |
#!/usr/bin/env python3
# Copyright 2023 (authors: Feiteng Li)
#
# See ../../../../LICENSE for clarification regarding multiple authors
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import torch
from modules.optim import Eden
def calc_lr(step, dim_embed, warmup_steps):
return dim_embed ** (-0.5) * min(
step ** (-0.5), step * warmup_steps ** (-1.5)
)
class NoamScheduler(torch.optim.lr_scheduler._LRScheduler):
def __init__(
self,
base_lr: float,
optimizer: torch.optim.Optimizer,
dim_embed: int,
warmup_steps: int,
last_epoch: int = -1,
verbose: bool = False,
) -> None:
self.dim_embed = dim_embed
self.base_lr = base_lr
self.warmup_steps = warmup_steps
self.num_param_groups = len(optimizer.param_groups)
super().__init__(optimizer, last_epoch, verbose)
def get_lr(self) -> float:
lr = self.base_lr * calc_lr(
self._step_count, self.dim_embed, self.warmup_steps
)
return [lr] * self.num_param_groups
def set_step(self, step: int):
self._step_count = step
def get_scheduler(params, optimizer):
if params.scheduler_name.lower() == "eden":
scheduler = Eden(optimizer, 5000, 4, warmup_batches=params.warmup_steps)
elif params.scheduler_name.lower() == "noam":
scheduler = NoamScheduler(
params.base_lr,
optimizer,
params.decoder_dim,
warmup_steps=params.warmup_steps,
)
# scheduler.set_step(params.start_batch or params.batch_idx_train)
elif params.scheduler_name.lower() == "cosine":
scheduler = torch.optim.lr_scheduler.CosineAnnealingLR(
params.warmup_steps,
optimizer,
eta_min=params.base_lr,
)
else:
raise NotImplementedError(f"{params.scheduler_name}")
return scheduler
|