Spaces:
Runtime error
Runtime error
File size: 12,750 Bytes
c2bb5f2 ad48e75 c2bb5f2 ad48e75 c2bb5f2 72d1130 c2bb5f2 40d6398 c2bb5f2 3b1856e c2bb5f2 3b1856e c2bb5f2 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 |
from fastapi import FastAPI
from sqlalchemy import create_engine
from sqlalchemy.orm import sessionmaker
from s2smodels import Base, Audio_segment, AudioGeneration
from pydub import AudioSegment
import os
from fastapi import FastAPI, Response
import torch
from fastapi.responses import JSONResponse
from utils.prompt_making import make_prompt
from transformers import AutoModelForSpeechSeq2Seq, AutoProcessor, pipeline
from utils.generation import SAMPLE_RATE, generate_audio, preload_models
from io import BytesIO
from pyannote.audio import Pipeline
import soundfile as sf
from fastapi_cors import CORS
DATABASE_URL = "sqlite:///./sql_app.db"
engine = create_engine(DATABASE_URL)
Session = sessionmaker(bind=engine)
app = FastAPI()
"""
origins = ["*"]
app.add_middleware(
CORS,
allow_origins=origins,
allow_credentials=True,
allow_methods=["*"],
allow_headers=["*"],
)
"""
Base.metadata.create_all(engine)
@app.get("/")
def root():
return {"message": "No result"}
#add audio segements in Audio_segment Table
def create_segment(start_time: float, end_time: float, audio: AudioSegment, type: str):
session = Session()
audio_bytes = BytesIO()
audio.export(audio_bytes, format='wav')
audio_bytes = audio_bytes.getvalue()
segment = Audio_segment(start_time=start_time, end_time=end_time, type=type, audio=audio_bytes)
session.add(segment)
session.commit()
session.close()
return {"status_code": 200, "message": "success"}
#add target audio to AudioGeneration Table
def generate_target(audio: AudioSegment):
session = Session()
audio_bytes = BytesIO()
audio.export(audio_bytes, format='wav')
audio_bytes = audio_bytes.getvalue()
target_audio = AudioGeneration(audio=audio_bytes)
session.add(target_audio)
session.commit()
session.close()
return {"status_code": 200, "message": "success"}
"""
audio segmentation into speech and non-speech using segmentation model
"""
def audio_speech_nonspeech_detection(audio_url):
pipeline = Pipeline.from_pretrained(
"pyannote/speaker-diarization-3.0"
)
diarization = pipeline(audio_url)
speaker_regions=[]
for turn, _,speaker in diarization.itertracks(yield_label=True):
speaker_regions.append({"start":turn.start,"end":turn.end})
sound = AudioSegment.from_wav(audio_url)
speaker_regions.sort(key=lambda x: x['start'])
non_speech_regions = []
for i in range(1, len(speaker_regions)):
start = speaker_regions[i-1]['end']
end = speaker_regions[i]['start']
if end > start:
non_speech_regions.append({'start': start, 'end': end})
first_speech_start = speaker_regions[0]['start']
if first_speech_start > 0:
non_speech_regions.insert(0, {'start': 0, 'end': first_speech_start})
last_speech_end = speaker_regions[-1]['end']
total_audio_duration = len(sound)
if last_speech_end < total_audio_duration:
non_speech_regions.append({'start': last_speech_end, 'end': total_audio_duration})
return speaker_regions,non_speech_regions
"""
save speech and non-speech segments in audio_segment table
"""
def split_audio_segments(audio_url):
sound = AudioSegment.from_wav(audio_url)
speech_segments, non_speech_segment = audio_speech_nonspeech_detection(audio_url)
# Process speech segments
for i, speech_segment in enumerate(speech_segments):
start = int(speech_segment['start'] * 1000)
end = int(speech_segment['end'] * 1000)
segment = sound[start:end]
create_segment(start_time=start/1000,
end_time=end/1000,
type="speech",audio=segment)
# Process non-speech segments
for i, non_speech_segment in enumerate(non_speech_segment):
start = int(non_speech_segment['start'] * 1000)
end = int(non_speech_segment['end'] * 1000)
segment = sound[start:end]
create_segment(start_time=start/1000,
end_time=end/1000,
type="non-speech",audio=segment)
#@app.post("/translate_en_ar/")
def en_text_to_ar_text_translation(text):
pipe = pipeline("translation", model="facebook/nllb-200-distilled-600M")
result=pipe(text,src_lang='English',tgt_lang='Egyptain Arabic')
return result[0]['translation_text']
def make_prompt_audio(name,audio_path):
make_prompt(name=name, audio_prompt_path=audio_path)
# whisper model for speech to text process (english language)
#@app.post("/en_speech_ar_text/")
def en_speech_to_en_text_process(segment):
device = "cuda:0" if torch.cuda.is_available() else "cpu"
torch_dtype = torch.float16 if torch.cuda.is_available() else torch.float32
model_id = "openai/whisper-large-v3"
model = AutoModelForSpeechSeq2Seq.from_pretrained(
model_id, torch_dtype=torch_dtype, low_cpu_mem_usage=True, use_safetensors=True)
model.to(device)
processor = AutoProcessor.from_pretrained(model_id)
pipe = pipeline(
"automatic-speech-recognition",
model=model,
tokenizer=processor.tokenizer,
feature_extractor=processor.feature_extractor,
max_new_tokens=128,
chunk_length_s=30,
batch_size=16,
return_timestamps=True,
torch_dtype=torch_dtype,
device=device,
)
result = pipe(segment)
return result["text"]
#text to speech using VALL-E-X model
#@app.post("/text_to_speech/")
def text_to_speech(segment_id, target_text, audio_prompt):
preload_models()
session = Session()
segment = session.query(Audio_segment).get(segment_id)
make_prompt_audio(name=f"audio_{segment_id}",audio_path=audio_prompt)
audio_array = generate_audio(target_text,f"audio_{segment_id}")
temp_file = BytesIO()
sf.write(temp_file, audio_array, SAMPLE_RATE, format='wav')
temp_file.seek(0)
segment.audio = temp_file.getvalue()
session.commit()
session.close()
temp_file.close()
#os.remove(temp_file)
"""
reconstruct target audio using all updated segment
in audio_segment table and then remove all audio_Segment records
"""
def construct_audio():
session = Session()
# Should be ordered by start_time
segments = session.query(Audio_segment).order_by('start_time').all()
audio_files = []
for segment in segments:
audio_files.append(AudioSegment.from_file(BytesIO(segment.audio), format='wav'))
target_audio = sum(audio_files, AudioSegment.empty())
generate_target(audio=target_audio)
# Delete all records in Audio_segment table
session.query(Audio_segment).delete()
session.commit()
session.close()
"""
source => english speech
target => arabic speeech
"""
#@app.post("/en_speech_ar_speech/")
def speech_to_speech_translation_en_ar(audio_url):
session=Session()
target_text=None
split_audio_segments(audio_url)
#filtering by type
speech_segments = session.query(Audio_segment).filter(Audio_segment.type == "speech").all()
for segment in speech_segments:
audio_data = segment.audio
text = en_speech_to_en_text_process(audio_data)
if text:
target_text=en_text_to_ar_text_translation(text)
else:
print("speech_to_text_process function not return result. ")
if target_text is None:
print("Target text is None.")
else:
segment_id = segment.id
segment_duration = segment.end_time - segment.start_time
if segment_duration <=15:
text_to_speech(segment_id,target_text,segment.audio)
else:
audio_data=extract_15_seconds(segment.audio,segment.start_time,segment.end_time)
text_to_speech(segment_id,target_text,audio_data)
os.remove(audio_data)
construct_audio()
return JSONResponse(status_code=200, content={"status_code":"succcessfully"})
@app.get("/get_ar_audio/")
async def get_ar_audio(audio_url):
speech_to_speech_translation_en_ar(audio_url)
session = Session()
# Get target audio from AudioGeneration
target_audio = session.query(AudioGeneration).order_by(AudioGeneration.id.desc()).first()
# Remove target audio from database
#session.query(AudioGeneration).delete()
#session.commit()
#session.close()
if target_audio is None:
raise ValueError("No audio found in the database")
audio_bytes = target_audio.audio
return Response(content=audio_bytes, media_type="audio/wav")
# speech to speech from arabic to english processes
#@app.post("/ar_speech_to_en_text/")
def ar_speech_to_ar_text_process(segment):
device = "cuda:0" if torch.cuda.is_available() else "cpu"
torch_dtype = torch.float16 if torch.cuda.is_available() else torch.float32
model_id = "openai/whisper-large-v3"
model = AutoModelForSpeechSeq2Seq.from_pretrained(
model_id, torch_dtype=torch_dtype, low_cpu_mem_usage=True, use_safetensors=True)
model.to(device)
processor = AutoProcessor.from_pretrained(model_id)
pipe = pipeline(
"automatic-speech-recognition",
model=model,
tokenizer=processor.tokenizer,
feature_extractor=processor.feature_extractor,
max_new_tokens=128,
chunk_length_s=30,
batch_size=16,
return_timestamps=True,
torch_dtype=torch_dtype,
device=device,
)
result = pipe(segment,generate_kwargs={"language": "arabic"})
return result["text"]
#@app.post("/ar_translate/")
def ar_text_to_en_text_translation(text):
pipe = pipeline("translation", model="facebook/nllb-200-distilled-600M")
result=pipe(text,src_lang='Egyptain Arabic',tgt_lang='English')
return result[0]['translation_text']
"""
source => arabic speech
target => english speeech
"""
def speech_to_speech_translation_ar_en(audio_url):
session=Session()
target_text=None
split_audio_segments(audio_url)
#filtering by type
speech_segments = session.query(Audio_segment).filter(Audio_segment.type == "speech").all()
for segment in speech_segments:
audio_data = segment.audio
text = ar_speech_to_ar_text_process(audio_data)
if text:
target_text=ar_text_to_en_text_translation(text)
else:
print("speech_to_text_process function not return result. ")
if target_text is None:
print("Target text is None.")
else:
segment_id = segment.id
segment_duration = segment.end_time - segment.start_time
if segment_duration <=15:
text_to_speech(segment_id,target_text,segment.audio)
else:
audio_data=extract_15_seconds(segment.audio,segment.start_time,segment.end_time)
text_to_speech(segment_id,target_text,audio_data)
os.remove(audio_data)
construct_audio()
return JSONResponse(status_code=200, content={"status_code":"succcessfully"})
@app.get("/get_en_audio/")
async def get_en_audio(audio_url):
speech_to_speech_translation_ar_en(audio_url)
session = Session()
# Get target audio from AudioGeneration
target_audio = session.query(AudioGeneration).order_by(AudioGeneration.id.desc()).first()
# Remove target audio from database
#session.query(AudioGeneration).delete()
#session.commit()
#session.close()
if target_audio is None:
raise ValueError("No audio found in the database")
audio_bytes = target_audio.audio
return Response(content=audio_bytes, media_type="audio/wav")
@app.get("/audio_segments/")
def get_all_audio_segments():
session=Session()
segments = session.query(Audio_segment).all()
segment_dicts = []
for segment in segments:
if segment.audio is None:
raise ValueError("No audio found in the database")
audio_bytes = segment.audio
file_path = f"segments//segment{segment.id}_audio.wav"
with open(file_path, "wb") as file:
file.write(audio_bytes)
segment_dicts.append({
"id": segment.id,
"start_time": segment.start_time,
"end_time": segment.end_time,
"type": segment.type,
"audio_url":file_path
})
session.close()
return {"segments":segment_dicts}
def extract_15_seconds(audio_data, start_time, end_time):
audio_segment = AudioSegment.from_file(BytesIO(audio_data), format='wav')
start_ms = start_time * 1000
end_ms = min((start_time + 15) * 1000, end_time * 1000)
extracted_segment = audio_segment[start_ms:end_ms]
temp_wav_path = "temp.wav"
extracted_segment.export(temp_wav_path, format="wav")
return temp_wav_path
|