Spaces:
Sleeping
Sleeping
File size: 7,864 Bytes
a617169 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 |
import gradio as gr import os import re from groq import Groq def validate_api_key(api_key): """Validate if the API key has the correct format.""" # Basic format check for Groq API keys (they typically start with 'gsk_') if not api_key.strip(): return False, "API key cannot be empty" if not api_key.startswith("gsk_"): return False, "Invalid API key format. Groq API keys typically start with 'gsk_'" return True, "API key looks valid" def test_api_connection(api_key): """Test the API connection with a minimal request.""" try: client = Groq(api_key=api_key) # Making a minimal API call to test the connection client.chat.completions.create( model="llama3-70b-8192", messages=[{"role": "user", "content": "test"}], max_tokens=5 ) return True, "API connection successful" except Exception as e: # Handle all exceptions since Groq might not expose specific error types if "authentication" in str(e).lower() or "api key" in str(e).lower(): return False, "Authentication failed: Invalid API key" else: return False, f"Error connecting to Groq API: {str(e)}" def chat_with_groq(api_key, model, user_message, temperature, max_tokens, top_p, chat_history): """ Interact with the Groq API to get a response. """ # Validate API key is_valid, message = validate_api_key(api_key) if not is_valid: return chat_history + [[user_message, f"Error: {message}"]] # Test API connection connection_valid, connection_message = test_api_connection(api_key) if not connection_valid: return chat_history + [[user_message, f"Error: {connection_message}"]] try: # Format history for the API messages = [] for human, assistant in chat_history: messages.append({"role": "user", "content": human}) messages.append({"role": "assistant", "content": assistant}) # Add the current message messages.append({"role": "user", "content": user_message}) # Create the client and make the API call client = Groq(api_key=api_key) response = client.chat.completions.create( model=model, messages=messages, temperature=temperature, max_tokens=max_tokens, top_p=top_p ) # Extract the response text assistant_response = response.choices[0].message.content # Return updated chat history return chat_history + [[user_message, assistant_response]] except Exception as e: error_message = f"Error: {str(e)}" return chat_history + [[user_message, error_message]] def clear_conversation(): """Clear the conversation history.""" return [] # Define available models models = [ "llama3-70b-8192", "llama3-8b-8192", "mistral-saba-24b", "gemma2-9b-it", "allam-2-7b" ] # Create the Gradio interface with gr.Blocks(title="Groq AI Chat Playground") as app: gr.Markdown("# Groq AI Chat Playground") # New model information accordion with gr.Accordion("ℹ️ Model Information - Learn about available models", open=False): gr.Markdown(""" ### Available Models and Use Cases **llama3-70b-8192** - Meta's most powerful language model - 70 billion parameters with 8192 token context window - Best for: Complex reasoning, sophisticated content generation, creative writing, and detailed analysis - Optimal for users needing the highest quality AI responses **llama3-8b-8192** - Lighter version of Llama 3 - 8 billion parameters with 8192 token context window - Best for: Faster responses, everyday tasks, simpler queries - Good balance between performance and speed **mistral-saba-24b** - Mistral AI's advanced model - 24 billion parameters - Best for: High-quality reasoning, code generation, and structured outputs - Excellent for technical and professional use cases **gemma2-9b-it** - Google's instruction-tuned model - 9 billion parameters - Best for: Following specific instructions, educational content, and general knowledge queries - Well-rounded performance for various tasks **allam-2-7b** - Specialized model from Aleph Alpha - 7 billion parameters - Best for: Multilingual support, concise responses, and straightforward Q&A - Good for international users and simpler applications *Note: Larger models generally provide higher quality responses but may take slightly longer to generate.* """) gr.Markdown("Enter your Groq API key to start chatting with AI models.") with gr.Row(): with gr.Column(scale=2): api_key_input = gr.Textbox( label="Groq API Key", placeholder="Enter your Groq API key (starts with gsk_)", type="password" ) with gr.Column(scale=1): test_button = gr.Button("Test API Connection") api_status = gr.Textbox(label="API Status", interactive=False) with gr.Row(): with gr.Column(): model_dropdown = gr.Dropdown( choices=models, label="Select Model", value="llama3-70b-8192" ) with gr.Row(): with gr.Column(): with gr.Accordion("Advanced Settings", open=False): temperature_slider = gr.Slider( minimum=0.0, maximum=1.0, value=0.7, step=0.01, label="Temperature (higher = more creative, lower = more focused)" ) max_tokens_slider = gr.Slider( minimum=256, maximum=8192, value=4096, step=256, label="Max Tokens (maximum length of response)" ) top_p_slider = gr.Slider( minimum=0.0, maximum=1.0, value=0.95, step=0.01, label="Top P (nucleus sampling probability threshold)" ) chatbot = gr.Chatbot(label="Conversation", height=500) with gr.Row(): message_input = gr.Textbox( label="Your Message", placeholder="Type your message here...", lines=3 ) with gr.Row(): submit_button = gr.Button("Send", variant="primary") clear_button = gr.Button("Clear Conversation") # Connect components with functions submit_button.click( fn=chat_with_groq, inputs=[ api_key_input, model_dropdown, message_input, temperature_slider, max_tokens_slider, top_p_slider, chatbot ], outputs=chatbot ).then( fn=lambda: "", inputs=None, outputs=message_input ) message_input.submit( fn=chat_with_groq, inputs=[ api_key_input, model_dropdown, message_input, temperature_slider, max_tokens_slider, top_p_slider, chatbot ], outputs=chatbot ).then( fn=lambda: "", inputs=None, outputs=message_input ) clear_button.click( fn=clear_conversation, inputs=None, outputs=chatbot ) test_button.click( fn=test_api_connection, inputs=[api_key_input], outputs=[api_status] ) # Launch the app if __name__ == "__main__": app.launch(share=False) |