Spaces:
Sleeping
Sleeping
File size: 10,049 Bytes
eb9d1af |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 |
import cv2
import numpy as np
# np.set_printoptions(threshold=np.inf)
import random
import torch
import torchvision.transforms as transforms
# from visualization import plot_img_and_mask,plot_one_box,show_seg_result
from pathlib import Path
from PIL import Image
from torch.utils.data import Dataset
from ..utils import letterbox, augment_hsv, random_perspective, xyxy2xywh, cutout
class AutoDriveDataset(Dataset):
"""
A general Dataset for some common function
"""
def __init__(self, cfg, is_train, inputsize=640, transform=None):
"""
initial all the characteristic
Inputs:
-cfg: configurations
-is_train(bool): whether train set or not
-transform: ToTensor and Normalize
Returns:
None
"""
self.is_train = is_train
self.cfg = cfg
self.transform = transform
self.inputsize = inputsize
self.Tensor = transforms.ToTensor()
img_root = Path(cfg.DATASET.DATAROOT)
label_root = Path(cfg.DATASET.LABELROOT)
mask_root = Path(cfg.DATASET.MASKROOT)
lane_root = Path(cfg.DATASET.LANEROOT)
if is_train:
indicator = cfg.DATASET.TRAIN_SET
else:
indicator = cfg.DATASET.TEST_SET
self.img_root = img_root / indicator
self.label_root = label_root / indicator
self.mask_root = mask_root / indicator
self.lane_root = lane_root / indicator
# self.label_list = self.label_root.iterdir()
self.mask_list = self.mask_root.iterdir()
self.db = []
self.data_format = cfg.DATASET.DATA_FORMAT
self.scale_factor = cfg.DATASET.SCALE_FACTOR
self.rotation_factor = cfg.DATASET.ROT_FACTOR
self.flip = cfg.DATASET.FLIP
self.color_rgb = cfg.DATASET.COLOR_RGB
# self.target_type = cfg.MODEL.TARGET_TYPE
self.shapes = np.array(cfg.DATASET.ORG_IMG_SIZE)
def _get_db(self):
"""
finished on children Dataset(for dataset which is not in Bdd100k format, rewrite children Dataset)
"""
raise NotImplementedError
def evaluate(self, cfg, preds, output_dir):
"""
finished on children dataset
"""
raise NotImplementedError
def __len__(self,):
"""
number of objects in the dataset
"""
return len(self.db)
def __getitem__(self, idx):
"""
Get input and groud-truth from database & add data augmentation on input
Inputs:
-idx: the index of image in self.db(database)(list)
self.db(list) [a,b,c,...]
a: (dictionary){'image':, 'information':}
Returns:
-image: transformed image, first passed the data augmentation in __getitem__ function(type:numpy), then apply self.transform
-target: ground truth(det_gt,seg_gt)
function maybe useful
cv2.imread
cv2.cvtColor(data, cv2.COLOR_BGR2RGB)
cv2.warpAffine
"""
data = self.db[idx]
img = cv2.imread(data["image"], cv2.IMREAD_COLOR | cv2.IMREAD_IGNORE_ORIENTATION)
img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB)
# seg_label = cv2.imread(data["mask"], 0)
if self.cfg.num_seg_class == 3:
seg_label = cv2.imread(data["mask"])
else:
seg_label = cv2.imread(data["mask"], 0)
lane_label = cv2.imread(data["lane"], 0)
#print(lane_label.shape)
# print(seg_label.shape)
# print(lane_label.shape)
# print(seg_label.shape)
resized_shape = self.inputsize
if isinstance(resized_shape, list):
resized_shape = max(resized_shape)
h0, w0 = img.shape[:2] # orig hw
r = resized_shape / max(h0, w0) # resize image to img_size
if r != 1: # always resize down, only resize up if training with augmentation
interp = cv2.INTER_AREA if r < 1 else cv2.INTER_LINEAR
img = cv2.resize(img, (int(w0 * r), int(h0 * r)), interpolation=interp)
seg_label = cv2.resize(seg_label, (int(w0 * r), int(h0 * r)), interpolation=interp)
lane_label = cv2.resize(lane_label, (int(w0 * r), int(h0 * r)), interpolation=interp)
h, w = img.shape[:2]
(img, seg_label, lane_label), ratio, pad = letterbox((img, seg_label, lane_label), resized_shape, auto=True, scaleup=self.is_train)
shapes = (h0, w0), ((h / h0, w / w0), pad) # for COCO mAP rescaling
# ratio = (w / w0, h / h0)
# print(resized_shape)
det_label = data["label"]
labels=[]
if det_label.size > 0:
# Normalized xywh to pixel xyxy format
labels = det_label.copy()
labels[:, 1] = ratio[0] * w * (det_label[:, 1] - det_label[:, 3] / 2) + pad[0] # pad width
labels[:, 2] = ratio[1] * h * (det_label[:, 2] - det_label[:, 4] / 2) + pad[1] # pad height
labels[:, 3] = ratio[0] * w * (det_label[:, 1] + det_label[:, 3] / 2) + pad[0]
labels[:, 4] = ratio[1] * h * (det_label[:, 2] + det_label[:, 4] / 2) + pad[1]
if self.is_train:
combination = (img, seg_label, lane_label)
(img, seg_label, lane_label), labels = random_perspective(
combination=combination,
targets=labels,
degrees=self.cfg.DATASET.ROT_FACTOR,
translate=self.cfg.DATASET.TRANSLATE,
scale=self.cfg.DATASET.SCALE_FACTOR,
shear=self.cfg.DATASET.SHEAR
)
#print(labels.shape)
augment_hsv(img, hgain=self.cfg.DATASET.HSV_H, sgain=self.cfg.DATASET.HSV_S, vgain=self.cfg.DATASET.HSV_V)
# img, seg_label, labels = cutout(combination=combination, labels=labels)
if len(labels):
# convert xyxy to xywh
labels[:, 1:5] = xyxy2xywh(labels[:, 1:5])
# Normalize coordinates 0 - 1
labels[:, [2, 4]] /= img.shape[0] # height
labels[:, [1, 3]] /= img.shape[1] # width
# if self.is_train:
# random left-right flip
lr_flip = True
if lr_flip and random.random() < 0.5:
img = np.fliplr(img)
seg_label = np.fliplr(seg_label)
lane_label = np.fliplr(lane_label)
if len(labels):
labels[:, 1] = 1 - labels[:, 1]
# random up-down flip
ud_flip = False
if ud_flip and random.random() < 0.5:
img = np.flipud(img)
seg_label = np.filpud(seg_label)
lane_label = np.filpud(lane_label)
if len(labels):
labels[:, 2] = 1 - labels[:, 2]
else:
if len(labels):
# convert xyxy to xywh
labels[:, 1:5] = xyxy2xywh(labels[:, 1:5])
# Normalize coordinates 0 - 1
labels[:, [2, 4]] /= img.shape[0] # height
labels[:, [1, 3]] /= img.shape[1] # width
labels_out = torch.zeros((len(labels), 6))
if len(labels):
labels_out[:, 1:] = torch.from_numpy(labels)
# Convert
# img = img[:, :, ::-1].transpose(2, 0, 1) # BGR to RGB, to 3x416x416
# img = img.transpose(2, 0, 1)
img = np.ascontiguousarray(img)
# seg_label = np.ascontiguousarray(seg_label)
# if idx == 0:
# print(seg_label[:,:,0])
if self.cfg.num_seg_class == 3:
_,seg0 = cv2.threshold(seg_label[:,:,0],128,255,cv2.THRESH_BINARY)
_,seg1 = cv2.threshold(seg_label[:,:,1],1,255,cv2.THRESH_BINARY)
_,seg2 = cv2.threshold(seg_label[:,:,2],1,255,cv2.THRESH_BINARY)
else:
_,seg1 = cv2.threshold(seg_label,1,255,cv2.THRESH_BINARY)
_,seg2 = cv2.threshold(seg_label,1,255,cv2.THRESH_BINARY_INV)
_,lane1 = cv2.threshold(lane_label,1,255,cv2.THRESH_BINARY)
_,lane2 = cv2.threshold(lane_label,1,255,cv2.THRESH_BINARY_INV)
# _,seg2 = cv2.threshold(seg_label[:,:,2],1,255,cv2.THRESH_BINARY)
# # seg1[cutout_mask] = 0
# # seg2[cutout_mask] = 0
# seg_label /= 255
# seg0 = self.Tensor(seg0)
if self.cfg.num_seg_class == 3:
seg0 = self.Tensor(seg0)
seg1 = self.Tensor(seg1)
seg2 = self.Tensor(seg2)
# seg1 = self.Tensor(seg1)
# seg2 = self.Tensor(seg2)
lane1 = self.Tensor(lane1)
lane2 = self.Tensor(lane2)
# seg_label = torch.stack((seg2[0], seg1[0]),0)
if self.cfg.num_seg_class == 3:
seg_label = torch.stack((seg0[0],seg1[0],seg2[0]),0)
else:
seg_label = torch.stack((seg2[0], seg1[0]),0)
lane_label = torch.stack((lane2[0], lane1[0]),0)
# _, gt_mask = torch.max(seg_label, 0)
# _ = show_seg_result(img, gt_mask, idx, 0, save_dir='debug', is_gt=True)
target = [labels_out, seg_label, lane_label]
img = self.transform(img)
return img, target, data["image"], shapes
def select_data(self, db):
"""
You can use this function to filter useless images in the dataset
Inputs:
-db: (list)database
Returns:
-db_selected: (list)filtered dataset
"""
db_selected = ...
return db_selected
@staticmethod
def collate_fn(batch):
img, label, paths, shapes= zip(*batch)
label_det, label_seg, label_lane = [], [], []
for i, l in enumerate(label):
l_det, l_seg, l_lane = l
l_det[:, 0] = i # add target image index for build_targets()
label_det.append(l_det)
label_seg.append(l_seg)
label_lane.append(l_lane)
return torch.stack(img, 0), [torch.cat(label_det, 0), torch.stack(label_seg, 0), torch.stack(label_lane, 0)], paths, shapes
|