Spaces:
Sleeping
Sleeping
File size: 23,151 Bytes
79c80cd |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 |
import time
from lib.core.evaluate import ConfusionMatrix,SegmentationMetric
from lib.core.general import non_max_suppression,check_img_size,scale_coords,xyxy2xywh,xywh2xyxy,box_iou,coco80_to_coco91_class,plot_images,ap_per_class,output_to_target
from lib.utils.utils import time_synchronized
from lib.utils import plot_img_and_mask,plot_one_box,show_seg_result
import torch
from threading import Thread
import numpy as np
from PIL import Image
from torchvision import transforms
from pathlib import Path
import json
import random
import cv2
import os
import math
from torch.cuda import amp
from tqdm import tqdm
def train(cfg, train_loader, model, criterion, optimizer, scaler, epoch, num_batch, num_warmup,
writer_dict, logger, device, rank=-1):
"""
train for one epoch
Inputs:
- config: configurations
- train_loader: loder for data
- model:
- criterion: (function) calculate all the loss, return total_loss, head_losses
- writer_dict:
outputs(2,)
output[0] len:3, [1,3,32,32,85], [1,3,16,16,85], [1,3,8,8,85]
output[1] len:1, [2,256,256]
output[2] len:1, [2,256,256]
target(2,)
target[0] [1,n,5]
target[1] [2,256,256]
target[2] [2,256,256]
Returns:
None
"""
batch_time = AverageMeter()
data_time = AverageMeter()
losses = AverageMeter()
# switch to train mode
model.train()
start = time.time()
for i, (input, target, paths, shapes) in enumerate(train_loader):
intermediate = time.time()
#print('tims:{}'.format(intermediate-start))
num_iter = i + num_batch * (epoch - 1)
if num_iter < num_warmup:
# warm up
lf = lambda x: ((1 + math.cos(x * math.pi / cfg.TRAIN.END_EPOCH)) / 2) * \
(1 - cfg.TRAIN.LRF) + cfg.TRAIN.LRF # cosine
xi = [0, num_warmup]
# model.gr = np.interp(ni, xi, [0.0, 1.0]) # iou loss ratio (obj_loss = 1.0 or iou)
for j, x in enumerate(optimizer.param_groups):
# bias lr falls from 0.1 to lr0, all other lrs rise from 0.0 to lr0
x['lr'] = np.interp(num_iter, xi, [cfg.TRAIN.WARMUP_BIASE_LR if j == 2 else 0.0, x['initial_lr'] * lf(epoch)])
if 'momentum' in x:
x['momentum'] = np.interp(num_iter, xi, [cfg.TRAIN.WARMUP_MOMENTUM, cfg.TRAIN.MOMENTUM])
data_time.update(time.time() - start)
if not cfg.DEBUG:
input = input.to(device, non_blocking=True)
assign_target = []
for tgt in target:
assign_target.append(tgt.to(device))
target = assign_target
with amp.autocast(enabled=device.type != 'cpu'):
outputs = model(input)
total_loss, head_losses = criterion(outputs, target, shapes,model)
# print(head_losses)
# compute gradient and do update step
optimizer.zero_grad()
scaler.scale(total_loss).backward()
scaler.step(optimizer)
scaler.update()
if rank in [-1, 0]:
# measure accuracy and record loss
losses.update(total_loss.item(), input.size(0))
# _, avg_acc, cnt, pred = accuracy(output.detach().cpu().numpy(),
# target.detach().cpu().numpy())
# acc.update(avg_acc, cnt)
# measure elapsed time
batch_time.update(time.time() - start)
end = time.time()
if i % cfg.PRINT_FREQ == 0:
msg = 'Epoch: [{0}][{1}/{2}]\t' \
'Time {batch_time.val:.3f}s ({batch_time.avg:.3f}s)\t' \
'Speed {speed:.1f} samples/s\t' \
'Data {data_time.val:.3f}s ({data_time.avg:.3f}s)\t' \
'Loss {loss.val:.5f} ({loss.avg:.5f})'.format(
epoch, i, len(train_loader), batch_time=batch_time,
speed=input.size(0)/batch_time.val,
data_time=data_time, loss=losses)
logger.info(msg)
writer = writer_dict['writer']
global_steps = writer_dict['train_global_steps']
writer.add_scalar('train_loss', losses.val, global_steps)
# writer.add_scalar('train_acc', acc.val, global_steps)
writer_dict['train_global_steps'] = global_steps + 1
def validate(epoch,config, val_loader, val_dataset, model, criterion, output_dir,
tb_log_dir, writer_dict=None, logger=None, device='cpu', rank=-1):
"""
validata
Inputs:
- config: configurations
- train_loader: loder for data
- model:
- criterion: (function) calculate all the loss, return
- writer_dict:
Return:
None
"""
# setting
max_stride = 32
weights = None
save_dir = output_dir + os.path.sep + 'visualization'
if not os.path.exists(save_dir):
os.mkdir(save_dir)
# print(save_dir)
_, imgsz = [check_img_size(x, s=max_stride) for x in config.MODEL.IMAGE_SIZE] #imgsz is multiple of max_stride
batch_size = config.TRAIN.BATCH_SIZE_PER_GPU * len(config.GPUS)
test_batch_size = config.TEST.BATCH_SIZE_PER_GPU * len(config.GPUS)
training = False
is_coco = False #is coco dataset
save_conf=False # save auto-label confidences
verbose=False
save_hybrid=False
log_imgs,wandb = min(16,100), None
nc = 1
iouv = torch.linspace(0.5,0.95,10).to(device) #iou vector for mAP@0.5:0.95
niou = iouv.numel()
try:
import wandb
except ImportError:
wandb = None
log_imgs = 0
seen = 0
confusion_matrix = ConfusionMatrix(nc=model.nc) #detector confusion matrix
da_metric = SegmentationMetric(config.num_seg_class) #segment confusion matrix
ll_metric = SegmentationMetric(2) #segment confusion matrix
names = {k: v for k, v in enumerate(model.names if hasattr(model, 'names') else model.module.names)}
colors = [[random.randint(0, 255) for _ in range(3)] for _ in names]
coco91class = coco80_to_coco91_class()
s = ('%20s' + '%12s' * 6) % ('Class', 'Images', 'Targets', 'P', 'R', 'mAP@.5', 'mAP@.5:.95')
p, r, f1, mp, mr, map50, map, t_inf, t_nms = 0., 0., 0., 0., 0., 0., 0., 0., 0.
losses = AverageMeter()
da_acc_seg = AverageMeter()
da_IoU_seg = AverageMeter()
da_mIoU_seg = AverageMeter()
ll_acc_seg = AverageMeter()
ll_IoU_seg = AverageMeter()
ll_mIoU_seg = AverageMeter()
T_inf = AverageMeter()
T_nms = AverageMeter()
# switch to train mode
model.eval()
jdict, stats, ap, ap_class, wandb_images = [], [], [], [], []
for batch_i, (img, target, paths, shapes) in tqdm(enumerate(val_loader), total=len(val_loader)):
if not config.DEBUG:
img = img.to(device, non_blocking=True)
assign_target = []
for tgt in target:
assign_target.append(tgt.to(device))
target = assign_target
nb, _, height, width = img.shape #batch size, channel, height, width
with torch.no_grad():
pad_w, pad_h = shapes[0][1][1]
pad_w = int(pad_w)
pad_h = int(pad_h)
ratio = shapes[0][1][0][0]
t = time_synchronized()
det_out, da_seg_out, ll_seg_out= model(img)
t_inf = time_synchronized() - t
if batch_i > 0:
T_inf.update(t_inf/img.size(0),img.size(0))
inf_out,train_out = det_out
#driving area segment evaluation
_,da_predict=torch.max(da_seg_out, 1)
_,da_gt=torch.max(target[1], 1)
da_predict = da_predict[:, pad_h:height-pad_h, pad_w:width-pad_w]
da_gt = da_gt[:, pad_h:height-pad_h, pad_w:width-pad_w]
da_metric.reset()
da_metric.addBatch(da_predict.cpu(), da_gt.cpu())
da_acc = da_metric.pixelAccuracy()
da_IoU = da_metric.IntersectionOverUnion()
da_mIoU = da_metric.meanIntersectionOverUnion()
da_acc_seg.update(da_acc,img.size(0))
da_IoU_seg.update(da_IoU,img.size(0))
da_mIoU_seg.update(da_mIoU,img.size(0))
#lane line segment evaluation
_,ll_predict=torch.max(ll_seg_out, 1)
_,ll_gt=torch.max(target[2], 1)
ll_predict = ll_predict[:, pad_h:height-pad_h, pad_w:width-pad_w]
ll_gt = ll_gt[:, pad_h:height-pad_h, pad_w:width-pad_w]
ll_metric.reset()
ll_metric.addBatch(ll_predict.cpu(), ll_gt.cpu())
ll_acc = ll_metric.lineAccuracy()
ll_IoU = ll_metric.IntersectionOverUnion()
ll_mIoU = ll_metric.meanIntersectionOverUnion()
ll_acc_seg.update(ll_acc,img.size(0))
ll_IoU_seg.update(ll_IoU,img.size(0))
ll_mIoU_seg.update(ll_mIoU,img.size(0))
total_loss, head_losses = criterion((train_out,da_seg_out, ll_seg_out), target, shapes,model) #Compute loss
losses.update(total_loss.item(), img.size(0))
#NMS
t = time_synchronized()
target[0][:, 2:] *= torch.Tensor([width, height, width, height]).to(device) # to pixels
lb = [target[0][target[0][:, 0] == i, 1:] for i in range(nb)] if save_hybrid else [] # for autolabelling
output = non_max_suppression(inf_out, conf_thres= config.TEST.NMS_CONF_THRESHOLD, iou_thres=config.TEST.NMS_IOU_THRESHOLD, labels=lb)
#output = non_max_suppression(inf_out, conf_thres=0.001, iou_thres=0.6)
#output = non_max_suppression(inf_out, conf_thres=config.TEST.NMS_CONF_THRES, iou_thres=config.TEST.NMS_IOU_THRES)
t_nms = time_synchronized() - t
if batch_i > 0:
T_nms.update(t_nms/img.size(0),img.size(0))
if config.TEST.PLOTS:
if batch_i == 0:
for i in range(test_batch_size):
img_test = cv2.imread(paths[i])
da_seg_mask = da_seg_out[i][:, pad_h:height-pad_h, pad_w:width-pad_w].unsqueeze(0)
da_seg_mask = torch.nn.functional.interpolate(da_seg_mask, scale_factor=int(1/ratio), mode='bilinear')
_, da_seg_mask = torch.max(da_seg_mask, 1)
da_gt_mask = target[1][i][:, pad_h:height-pad_h, pad_w:width-pad_w].unsqueeze(0)
da_gt_mask = torch.nn.functional.interpolate(da_gt_mask, scale_factor=int(1/ratio), mode='bilinear')
_, da_gt_mask = torch.max(da_gt_mask, 1)
da_seg_mask = da_seg_mask.int().squeeze().cpu().numpy()
da_gt_mask = da_gt_mask.int().squeeze().cpu().numpy()
# seg_mask = seg_mask > 0.5
# plot_img_and_mask(img_test, seg_mask, i,epoch,save_dir)
img_test1 = img_test.copy()
_ = show_seg_result(img_test, da_seg_mask, i,epoch,save_dir)
_ = show_seg_result(img_test1, da_gt_mask, i, epoch, save_dir, is_gt=True)
img_ll = cv2.imread(paths[i])
ll_seg_mask = ll_seg_out[i][:, pad_h:height-pad_h, pad_w:width-pad_w].unsqueeze(0)
ll_seg_mask = torch.nn.functional.interpolate(ll_seg_mask, scale_factor=int(1/ratio), mode='bilinear')
_, ll_seg_mask = torch.max(ll_seg_mask, 1)
ll_gt_mask = target[2][i][:, pad_h:height-pad_h, pad_w:width-pad_w].unsqueeze(0)
ll_gt_mask = torch.nn.functional.interpolate(ll_gt_mask, scale_factor=int(1/ratio), mode='bilinear')
_, ll_gt_mask = torch.max(ll_gt_mask, 1)
ll_seg_mask = ll_seg_mask.int().squeeze().cpu().numpy()
ll_gt_mask = ll_gt_mask.int().squeeze().cpu().numpy()
# seg_mask = seg_mask > 0.5
# plot_img_and_mask(img_test, seg_mask, i,epoch,save_dir)
img_ll1 = img_ll.copy()
_ = show_seg_result(img_ll, ll_seg_mask, i,epoch,save_dir, is_ll=True)
_ = show_seg_result(img_ll1, ll_gt_mask, i, epoch, save_dir, is_ll=True, is_gt=True)
img_det = cv2.imread(paths[i])
img_gt = img_det.copy()
det = output[i].clone()
if len(det):
det[:,:4] = scale_coords(img[i].shape[1:],det[:,:4],img_det.shape).round()
for *xyxy,conf,cls in reversed(det):
#print(cls)
label_det_pred = f'{names[int(cls)]} {conf:.2f}'
plot_one_box(xyxy, img_det , label=label_det_pred, color=colors[int(cls)], line_thickness=3)
cv2.imwrite(save_dir+"/batch_{}_{}_det_pred.png".format(epoch,i),img_det)
labels = target[0][target[0][:, 0] == i, 1:]
# print(labels)
labels[:,1:5]=xywh2xyxy(labels[:,1:5])
if len(labels):
labels[:,1:5]=scale_coords(img[i].shape[1:],labels[:,1:5],img_gt.shape).round()
for cls,x1,y1,x2,y2 in labels:
#print(names)
#print(cls)
label_det_gt = f'{names[int(cls)]}'
xyxy = (x1,y1,x2,y2)
plot_one_box(xyxy, img_gt , label=label_det_gt, color=colors[int(cls)], line_thickness=3)
cv2.imwrite(save_dir+"/batch_{}_{}_det_gt.png".format(epoch,i),img_gt)
# Statistics per image
# output([xyxy,conf,cls])
# target[0] ([img_id,cls,xyxy])
for si, pred in enumerate(output):
labels = target[0][target[0][:, 0] == si, 1:] #all object in one image
nl = len(labels) # num of object
tcls = labels[:, 0].tolist() if nl else [] # target class
path = Path(paths[si])
seen += 1
if len(pred) == 0:
if nl:
stats.append((torch.zeros(0, niou, dtype=torch.bool), torch.Tensor(), torch.Tensor(), tcls))
continue
# Predictions
predn = pred.clone()
scale_coords(img[si].shape[1:], predn[:, :4], shapes[si][0], shapes[si][1]) # native-space pred
# Append to text file
if config.TEST.SAVE_TXT:
gn = torch.tensor(shapes[si][0])[[1, 0, 1, 0]] # normalization gain whwh
for *xyxy, conf, cls in predn.tolist():
xywh = (xyxy2xywh(torch.tensor(xyxy).view(1, 4)) / gn).view(-1).tolist() # normalized xywh
line = (cls, *xywh, conf) if save_conf else (cls, *xywh) # label format
with open(save_dir / 'labels' / (path.stem + '.txt'), 'a') as f:
f.write(('%g ' * len(line)).rstrip() % line + '\n')
# W&B logging
if config.TEST.PLOTS and len(wandb_images) < log_imgs:
box_data = [{"position": {"minX": xyxy[0], "minY": xyxy[1], "maxX": xyxy[2], "maxY": xyxy[3]},
"class_id": int(cls),
"box_caption": "%s %.3f" % (names[cls], conf),
"scores": {"class_score": conf},
"domain": "pixel"} for *xyxy, conf, cls in pred.tolist()]
boxes = {"predictions": {"box_data": box_data, "class_labels": names}} # inference-space
wandb_images.append(wandb.Image(img[si], boxes=boxes, caption=path.name))
# Append to pycocotools JSON dictionary
if config.TEST.SAVE_JSON:
# [{"image_id": 42, "category_id": 18, "bbox": [258.15, 41.29, 348.26, 243.78], "score": 0.236}, ...
image_id = int(path.stem) if path.stem.isnumeric() else path.stem
box = xyxy2xywh(predn[:, :4]) # xywh
box[:, :2] -= box[:, 2:] / 2 # xy center to top-left corner
for p, b in zip(pred.tolist(), box.tolist()):
jdict.append({'image_id': image_id,
'category_id': coco91class[int(p[5])] if is_coco else int(p[5]),
'bbox': [round(x, 3) for x in b],
'score': round(p[4], 5)})
# Assign all predictions as incorrect
correct = torch.zeros(pred.shape[0], niou, dtype=torch.bool, device=device)
if nl:
detected = [] # target indices
tcls_tensor = labels[:, 0]
# target boxes
tbox = xywh2xyxy(labels[:, 1:5])
scale_coords(img[si].shape[1:], tbox, shapes[si][0], shapes[si][1]) # native-space labels
if config.TEST.PLOTS:
confusion_matrix.process_batch(pred, torch.cat((labels[:, 0:1], tbox), 1))
# Per target class
for cls in torch.unique(tcls_tensor):
ti = (cls == tcls_tensor).nonzero(as_tuple=False).view(-1) # prediction indices
pi = (cls == pred[:, 5]).nonzero(as_tuple=False).view(-1) # target indices
# Search for detections
if pi.shape[0]:
# Prediction to target ious
# n*m n:pred m:label
ious, i = box_iou(predn[pi, :4], tbox[ti]).max(1) # best ious, indices
# Append detections
detected_set = set()
for j in (ious > iouv[0]).nonzero(as_tuple=False):
d = ti[i[j]] # detected target
if d.item() not in detected_set:
detected_set.add(d.item())
detected.append(d)
correct[pi[j]] = ious[j] > iouv # iou_thres is 1xn
if len(detected) == nl: # all targets already located in image
break
# Append statistics (correct, conf, pcls, tcls)
stats.append((correct.cpu(), pred[:, 4].cpu(), pred[:, 5].cpu(), tcls))
if config.TEST.PLOTS and batch_i < 3:
f = save_dir +'/'+ f'test_batch{batch_i}_labels.jpg' # labels
#Thread(target=plot_images, args=(img, target[0], paths, f, names), daemon=True).start()
f = save_dir +'/'+ f'test_batch{batch_i}_pred.jpg' # predictions
#Thread(target=plot_images, args=(img, output_to_target(output), paths, f, names), daemon=True).start()
# Compute statistics
# stats : [[all_img_correct]...[all_img_tcls]]
stats = [np.concatenate(x, 0) for x in zip(*stats)] # to numpy zip(*) :unzip
map70 = None
map75 = None
if len(stats) and stats[0].any():
p, r, ap, f1, ap_class = ap_per_class(*stats, plot=False, save_dir=save_dir, names=names)
ap50, ap70, ap75,ap = ap[:, 0], ap[:,4], ap[:,5],ap.mean(1) # [P, R, AP@0.5, AP@0.5:0.95]
mp, mr, map50, map70, map75, map = p.mean(), r.mean(), ap50.mean(), ap70.mean(),ap75.mean(),ap.mean()
nt = np.bincount(stats[3].astype(np.int64), minlength=nc) # number of targets per class
else:
nt = torch.zeros(1)
# Print results
pf = '%20s' + '%12.3g' * 6 # print format
print(pf % ('all', seen, nt.sum(), mp, mr, map50, map))
#print(map70)
#print(map75)
# Print results per class
if (verbose or (nc <= 20 and not training)) and nc > 1 and len(stats):
for i, c in enumerate(ap_class):
print(pf % (names[c], seen, nt[c], p[i], r[i], ap50[i], ap[i]))
# Print speeds
t = tuple(x / seen * 1E3 for x in (t_inf, t_nms, t_inf + t_nms)) + (imgsz, imgsz, batch_size) # tuple
if not training:
print('Speed: %.1f/%.1f/%.1f ms inference/NMS/total per %gx%g image at batch-size %g' % t)
# Plots
if config.TEST.PLOTS:
confusion_matrix.plot(save_dir=save_dir, names=list(names.values()))
if wandb and wandb.run:
wandb.log({"Images": wandb_images})
wandb.log({"Validation": [wandb.Image(str(f), caption=f.name) for f in sorted(save_dir.glob('test*.jpg'))]})
# Save JSON
if config.TEST.SAVE_JSON and len(jdict):
w = Path(weights[0] if isinstance(weights, list) else weights).stem if weights is not None else '' # weights
anno_json = '../coco/annotations/instances_val2017.json' # annotations json
pred_json = str(save_dir / f"{w}_predictions.json") # predictions json
print('\nEvaluating pycocotools mAP... saving %s...' % pred_json)
with open(pred_json, 'w') as f:
json.dump(jdict, f)
try: # https://github.com/cocodataset/cocoapi/blob/master/PythonAPI/pycocoEvalDemo.ipynb
from pycocotools.coco import COCO
from pycocotools.cocoeval import COCOeval
anno = COCO(anno_json) # init annotations api
pred = anno.loadRes(pred_json) # init predictions api
eval = COCOeval(anno, pred, 'bbox')
if is_coco:
eval.params.imgIds = [int(Path(x).stem) for x in val_loader.dataset.img_files] # image IDs to evaluate
eval.evaluate()
eval.accumulate()
eval.summarize()
map, map50 = eval.stats[:2] # update results (mAP@0.5:0.95, mAP@0.5)
except Exception as e:
print(f'pycocotools unable to run: {e}')
# Return results
if not training:
s = f"\n{len(list(save_dir.glob('labels/*.txt')))} labels saved to {save_dir / 'labels'}" if config.TEST.SAVE_TXT else ''
print(f"Results saved to {save_dir}{s}")
model.float() # for training
maps = np.zeros(nc) + map
for i, c in enumerate(ap_class):
maps[c] = ap[i]
da_segment_result = (da_acc_seg.avg,da_IoU_seg.avg,da_mIoU_seg.avg)
ll_segment_result = (ll_acc_seg.avg,ll_IoU_seg.avg,ll_mIoU_seg.avg)
# print(da_segment_result)
# print(ll_segment_result)
detect_result = np.asarray([mp, mr, map50, map])
# print('mp:{},mr:{},map50:{},map:{}'.format(mp, mr, map50, map))
#print segmet_result
t = [T_inf.avg, T_nms.avg]
return da_segment_result, ll_segment_result, detect_result, losses.avg, maps, t
class AverageMeter(object):
"""Computes and stores the average and current value"""
def __init__(self):
self.reset()
def reset(self):
self.val = 0
self.avg = 0
self.sum = 0
self.count = 0
def update(self, val, n=1):
self.val = val
self.sum += val * n
self.count += n
self.avg = self.sum / self.count if self.count != 0 else 0
|