File size: 14,382 Bytes
65d4803 82a1f36 65d4803 a85555b 65d4803 a85555b 65d4803 a85555b 65d4803 a85555b bebf746 0bcb019 bebf746 0bcb019 bebf746 65d4803 a85555b 65d4803 a85555b 65d4803 a85555b 65d4803 a85555b 65d4803 a85555b 65d4803 82a1f36 bebf746 82a1f36 bebf746 65d4803 a85555b bebf746 a85555b bebf746 a85555b bebf746 65d4803 a85555b bebf746 a85555b bebf746 a85555b bebf746 65d4803 82a1f36 65d4803 bebf746 65d4803 bebf746 65d4803 a9c7cfe 65d4803 a85555b 65d4803 bebf746 65d4803 a85555b bebf746 65d4803 a9c7cfe 65d4803 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 |
import gradio as gr
import datasets
import difflib
import transformers
import torch
import logging
tokenizer = transformers.AutoTokenizer.from_pretrained("google/flan-t5-base")
dataset = (
datasets.load_dataset(
"shroom-semeval25/hallucinated_answer_generated_dataset",
split="test",
)
.take(10000)
.to_pandas()
.sort_values("question")
)
# Show columns in this order: question, correct_answer_generated, hallucinated_answer_generated, everything else
dataset = dataset[
["question", "correct_answer_generated", "hallucinated_answer_generated"]
+ [
col
for col in dataset.columns
if col
not in ["question", "correct_answer_generated", "hallucinated_answer_generated"]
]
]
def show_hallucinations(element):
original_text = element["correct_answer_generated"]
hallucinated_text = element["hallucinated_answer_generated"]
# tokenize both texts
original_tokens = tokenizer(
original_text, return_offsets_mapping=True, add_special_tokens=False
)
hallucinated_tokens = tokenizer(
hallucinated_text, return_offsets_mapping=True, add_special_tokens=False
)
# Find the tokens that are different. We have two lists of numbers, we need to find the differences (mind the order)
diff = difflib.SequenceMatcher(
None,
original_tokens["input_ids"],
hallucinated_tokens["input_ids"],
).get_opcodes()
entities = []
# Follows this structure:
# {
# "entity": "+" or "-",
# "start": 0,
# "end": 0,
# }
for tag, i1, i2, j1, j2 in diff:
try:
if tag == "equal":
continue
# Anything that is not equal is a hallucination
start_char = hallucinated_tokens["offset_mapping"][j1][0]
end_char = hallucinated_tokens["offset_mapping"][j2 - 1][1] + 1
entity = {
"entity": "hal",
"start": start_char,
"end": end_char,
}
# entity_2 = {
# "entity": "-",
# "start": start,
# "end": end,
# }
entities.append(entity)
# entities.append(entity_2)
except IndexError as e:
gr.Error(f"There was an error in the tokenization process: {e}")
return [
{
"calculated_diffs": diff,
"tokenized_original": original_tokens,
"tokenized_hallucinated": hallucinated_tokens,
**element.to_dict(),
},
element["correct_answer_generated"],
{
"text": hallucinated_text,
"entities": entities,
},
]
roberta_base_predictor = transformers.AutoModelForTokenClassification.from_pretrained(
"shroom-semeval25/cogumelo-hallucinations-detector-roberta-base"
)
roberta_base_tokenizer = transformers.AutoTokenizer.from_pretrained(
"shroom-semeval25/cogumelo-hallucinations-detector-roberta-base"
)
roberta_large_qa_predictor = (
transformers.AutoModelForTokenClassification.from_pretrained(
"shroom-semeval25/cogumelo-hallucinations-detector-roberta-large-qa-15000"
)
)
flan_t5_qa_predictor = transformers.AutoModelForTokenClassification.from_pretrained(
"shroom-semeval25/cogumelo-hallucinations-detector-flan-t5-xl-qa-v3"
)
flan_t5_qa_tokenizer = transformers.AutoTokenizer.from_pretrained(
"shroom-semeval25/cogumelo-hallucinations-detector-flan-t5-xl-qa-v3"
)
def trim_to_answer_only(
logits: torch.Tensor, special_tokens_mask: torch.Tensor, offsets: torch.Tensor
):
token_type_ids = torch.zeros_like(special_tokens_mask)
# Do a cumsum on the special tokens mask
cumsum_special_tokens_mask = special_tokens_mask.cumsum(dim=-1)
# Restrict it to the non-special tokens
cumsum_special_tokens_mask = cumsum_special_tokens_mask[
special_tokens_mask == 0
] # Now this has a different shape, we don't know what exactly it is, but we'll use it consistently so it's fine
# In case that the first token is a special token, we'd have cumsums on non-special tokens that are 1 and 2; otherwise, we'd have 0 and 1. To make sure that we always have 0 and 1, we'll subtract the minimum
cumsum_special_tokens_mask -= cumsum_special_tokens_mask.min()
token_type_ids[special_tokens_mask == 0] = cumsum_special_tokens_mask
return logits[token_type_ids != 0], offsets[token_type_ids != 0]
def mark_hallucinations(logits, hallucinated_text, offsets):
# Get the highest value for each token
predictions = logits.argmax(dim=-1).squeeze(0).tolist()
entities = []
current_entity = None
for i, prediction in enumerate(predictions):
if prediction == 0:
if current_entity is not None:
entities.append(current_entity)
current_entity = None
continue
if prediction == 1:
if current_entity is not None:
entities.append(current_entity)
current_entity = {
"entity": "hal",
"start": offsets[i][0],
"end": offsets[i][1] + 1,
}
if prediction == 2:
if current_entity is None:
current_entity = {
"entity": "hal",
"start": offsets[i][0],
"end": offsets[i][1] + 1,
}
else:
current_entity["end"] = offsets[i][1] + 1
if current_entity is not None:
entities.append(current_entity)
return {
"text": hallucinated_text,
"entities": entities,
}
def update_selection(evt: gr.SelectData):
selected_row = evt.index[0]
element = dataset.iloc[selected_row]
question = element["question"]
hallucinated_answer = element["hallucinated_answer_generated"]
json_example, original_text, highlighted_text = show_hallucinations(element)
return (
json_example,
original_text,
highlighted_text,
*get_hallucinations(hallucinated_answer, question),
)
def get_hallucinations(hallucinated_answer: str, question: str):
try:
hallucinated_tokens = roberta_base_tokenizer(
text=hallucinated_answer,
return_offsets_mapping=True,
add_special_tokens=True,
return_tensors="pt",
return_special_tokens_mask=True,
)
with torch.no_grad():
outputs_roberta_base = roberta_base_predictor(
input_ids=hallucinated_tokens.input_ids,
attention_mask=hallucinated_tokens.attention_mask,
)
# Take only the outputs that are NOT special tokens and where the attention mask is 1
logits_roberta_base = outputs_roberta_base.logits[
...,
(hallucinated_tokens.special_tokens_mask == 0)
& (hallucinated_tokens.attention_mask == 1),
:,
]
highlighted_text_predicted_roberta_base = mark_hallucinations(
hallucinated_text=hallucinated_answer,
logits=logits_roberta_base,
# Discard the first token, which is the BOS token
offsets=hallucinated_tokens["offset_mapping"][0][1:],
)
if question:
q_a_tokens = roberta_base_tokenizer(
# We have to batch into a single-example batch, because otherwise the tokenizer will interpret that the second element of the pair is example #2 of the batch (while actually it is the second part of the pair of example #1)
text=[(question, hallucinated_answer)],
return_offsets_mapping=True,
add_special_tokens=True,
return_tensors="pt",
return_special_tokens_mask=True,
)
flan_t5_q_a_tokens = flan_t5_qa_tokenizer(
text=[(question, hallucinated_answer)],
return_offsets_mapping=True,
add_special_tokens=True,
return_tensors="pt",
return_special_tokens_mask=True,
)
with torch.no_grad():
logits_roberta_large_qa = roberta_large_qa_predictor(
input_ids=q_a_tokens.input_ids,
attention_mask=q_a_tokens.attention_mask,
).logits
# Take only the outputs after the first special token and where the attention mask is 1 and the special tokens mask is 0
logits_roberta_large_qa, offsets_roberta_large_qa = trim_to_answer_only(
logits=logits_roberta_large_qa,
special_tokens_mask=q_a_tokens.special_tokens_mask,
offsets=q_a_tokens["offset_mapping"],
)
logits_flan_t5_qa = flan_t5_qa_predictor(
input_ids=flan_t5_q_a_tokens.input_ids,
attention_mask=flan_t5_q_a_tokens.attention_mask,
).logits
logits_flan_t5_qa, offsets_flan_t5_qa = trim_to_answer_only(
logits=logits_flan_t5_qa,
special_tokens_mask=flan_t5_q_a_tokens.special_tokens_mask,
offsets=flan_t5_q_a_tokens["offset_mapping"],
)
highlighted_text_predicted_roberta_large_qa = mark_hallucinations(
hallucinated_text=hallucinated_answer,
logits=logits_roberta_large_qa,
offsets=offsets_roberta_large_qa,
)
highlighted_text_predicted_flan_t5_qa = mark_hallucinations(
hallucinated_text=hallucinated_answer,
logits=logits_flan_t5_qa,
offsets=offsets_flan_t5_qa,
)
else:
highlighted_text_predicted_roberta_large_qa = {"text": "", "entities": []}
highlighted_text_predicted_flan_t5_qa = {"text": "", "entities": []}
except Exception as e:
logging.exception(f"An error occurred: {e}")
gr.Error(f"An error occurred: {e}")
highlighted_text_predicted_roberta_base = {"text": "", "entities": []}
highlighted_text_predicted_roberta_large_qa = {"text": "", "entities": []}
highlighted_text_predicted_flan_t5_qa = {"text": "", "entities": []}
return (
highlighted_text_predicted_roberta_base,
highlighted_text_predicted_roberta_large_qa,
highlighted_text_predicted_flan_t5_qa,
)
def predict_hallucinations_manual_input(text: str, question: str = ""):
return get_hallucinations(text, question)
with gr.Blocks(title="Hallucinations Explorer") as demo:
# A selectable dataframe with the dataset
# print(dataset)
gr.Markdown(
"""# COGUMELO
_SHROOM '25: Detection of Hallucinated Content_"""
)
with gr.Accordion(label="Manual Input", open=True) as manual_input:
model_question_input = gr.Textbox(
value="",
label="Question (only for RoBERTa Large QA and Flan T5 QA)",
placeholder="Type the question here",
type="text",
)
# A textbox where the user can input any text to try the model
model_manual_input = gr.Textbox(
value="",
label="Try your own text",
placeholder="Type your own text here",
type="text",
)
manual_input_highlighted_text_roberta_base = gr.HighlightedText(
label="Predicted Hallucinations (RoBERTa Base)",
color_map={"+": "red", "-": "blue", "hal": "red"},
combine_adjacent=True,
)
manual_input_highlighted_text_roberta_large_qa = gr.HighlightedText(
label="Predicted Hallucinations (RoBERTa Large QA)",
color_map={"+": "red", "-": "blue", "hal": "red"},
combine_adjacent=True,
)
manual_input_highlighted_text_flan_t5_qa = gr.HighlightedText(
label="Predicted Hallucinations (Flan T5 QA)",
color_map={"+": "red", "-": "blue", "hal": "red"},
combine_adjacent=True,
)
model_manual_input.change(
predict_hallucinations_manual_input,
inputs=[model_manual_input, model_question_input],
outputs=[
manual_input_highlighted_text_roberta_base,
manual_input_highlighted_text_roberta_large_qa,
manual_input_highlighted_text_flan_t5_qa,
],
)
# model_question_input.change(
# predict_hallucinations_manual_input_roberta_qa_large,
# inputs=[model_manual_input, model_question_input],
# outputs=[
# manual_input_highlighted_text_roberta_large_qa,
# ],
# )
gr.Markdown(
"""# Dataset
⚠️ These rows are part of the **test set** of the dataset, not the entire dataset (the model has therefore not seen them)
"""
)
df = gr.Dataframe(dataset)
original_text = gr.Textbox(label="Original Text", interactive=False)
highlighted_text = gr.HighlightedText(
label="Real Hallucinations (ground truth)",
color_map={"+": "red", "-": "blue", "hal": "red"},
combine_adjacent=True,
)
highlighted_text_predicted_roberta_base = gr.HighlightedText(
label="Predicted Hallucinations (RoBERTa Base)",
color_map={"+": "red", "-": "blue", "hal": "red"},
combine_adjacent=True,
)
highlighted_text_predicted_roberta_large_qa = gr.HighlightedText(
label="Predicted Hallucinations (RoBERTa Large QA)",
color_map={"+": "red", "-": "blue", "hal": "red"},
combine_adjacent=True,
)
highlighted_text_predicted_flan_t5_qa = gr.HighlightedText(
label="Predicted Hallucinations (Flan T5 QA)",
color_map={"+": "red", "-": "blue", "hal": "red"},
combine_adjacent=True,
)
json_example = gr.JSON()
df.select(
update_selection,
inputs=[],
outputs=[
json_example,
original_text,
highlighted_text,
highlighted_text_predicted_roberta_base,
highlighted_text_predicted_roberta_large_qa,
highlighted_text_predicted_flan_t5_qa,
],
)
demo.launch(show_error=True)
|