File size: 8,740 Bytes
08af2b0
 
 
 
 
 
788336c
08af2b0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
93aaea3
08af2b0
 
 
 
 
 
570ab35
08af2b0
570ab35
08af2b0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
570ab35
08af2b0
 
 
 
 
570ab35
08af2b0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
93aaea3
08af2b0
 
 
 
 
 
570ab35
08af2b0
570ab35
08af2b0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
import gradio as gr
import json
import requests
from typing import List, Optional
from pydantic import BaseModel, Field
from together import Together
import os 

# Initialize Together API
together = Together(api_key=os.getenv("togetherai"))

# Define the schemas for different API operations
class OrderItem(BaseModel):
    item_id: str
    quantity: int

class CreateOrderExtract(BaseModel):
    user_id: Optional[str] = Field(None, description="The user's ID if provided it can be a name as well")
    items: List[OrderItem] = Field(..., description="List of items ordered")

class CancelOrderExtract(BaseModel):
    order_id: str = Field(..., description="The ID of the order to cancel can be referenced as order id or order or id or order number")

class CheckOrderStatusExtract(BaseModel):
    order_id: str = Field(..., description="The ID of the order to check can be referenced as order id or order or id or order number")

class CreateInvoiceExtract(BaseModel):
    order_id: str = Field(..., description="The ID of the order for which to create an invoice")
    amount: float = Field(..., description="The amount of the invoice")

class GetInvoiceDetailsExtract(BaseModel):
    invoice_id: str = Field(..., description="The ID of the invoice to get details for")

class CreatePaymentExtract(BaseModel):
    invoice_id: str = Field(..., description="The ID of the invoice to pay")
    order_id: str = Field(..., description="The ID of the order associated with the payment")
    amount: float = Field(..., description="The amount of the payment")

# Function to classify user message
def classify_message(message: str) -> str:
    classify = together.chat.completions.create(
        messages=[
            {
                "role": "system",
                "content": "Strictly only Classify the following message into one of these categories: create_order (for creating an order) , cancel_order (for cancelling an order) , check_order_status (for checking order status and details of the order) , create_invoice (create an invoice) , get_invoice_details (get invoice details) , create_payment. Respond only with the category name and nothing else , even if its ambgious , give your best classification",
            },
            {
                "role": "user",
                "content": message,
            },
        ],
        model="meta-llama/Meta-Llama-3.1-70B-Instruct-Turbo",
    )
    print(classify.choices[0].message.content.strip())
    return classify.choices[0].message.content.strip()

# Function to extract information based on classification
def extract_info(message: str, classification: str) -> dict:
    schema_map = {
        "create_order": CreateOrderExtract,
        "cancel_order": CancelOrderExtract,
        "check_order_status": CheckOrderStatusExtract,
        "create_invoice": CreateInvoiceExtract,
        "get_invoice_details": GetInvoiceDetailsExtract,
        "create_payment": CreatePaymentExtract,
    }
    
    schema = schema_map[classification]
    
    extract = together.chat.completions.create(
        messages=[
            {
                "role": "system",
                "content": f"Extract {classification} information from the following message. Respond only in JSON.",
            },
            {
                "role": "user",
                "content": message,
            },
        ],
        model="meta-llama/Meta-Llama-3.1-70B-Instruct-Turbo",
        response_format={
            "type": "json_object",
            "schema": schema.model_json_schema(),
        },
    )
    print(json.loads(extract.choices[0].message.content))
    return json.loads(extract.choices[0].message.content)

# Function to make API call
def make_api_call(classification: str, info: dict) -> dict:
    base_url = os.getenv("baseurl")
    
    api_map = {
        "create_order": ("POST", f"{base_url}/orders"),
        "cancel_order": ("POST", f"{base_url}/orders/{{order_id}}/cancel"),
        "check_order_status": ("GET", f"{base_url}/orders/{{order_id}}/status"),
        "create_invoice": ("POST", f"{base_url}/invoices"),
        "get_invoice_details": ("GET", f"{base_url}/invoices/{{invoice_id}}"),
        "create_payment": ("POST", f"{base_url}/payments"),
    }
    
    method, url_template = api_map[classification]
    
    # Replace placeholders in the URL if necessary
    try:
        url = url_template.format(**info)
    except KeyError as e:
        return {"error": f"Missing required information: {str(e)}"}
    
    try:
        if method == "GET":
            response = requests.get(url)
        elif method == "POST":
            response = requests.post(url, json=info)
        response.raise_for_status()
        return response.json()
    except requests.RequestException as e:
        return {"error": f"API request failed: {str(e)}"}

# Function to interpret API response
def interpret_response(user_message: str, classification: str, api_response: dict) -> str:
    interpret = together.chat.completions.create(
        messages=[
            {
                "role": "system",
                "content": "Process user query and automated system API response to form a coherent natural reply that will help the user affirm the situation of their request. Your response will be streamed directly to the user. Do not include the fact that you are reading the API response. It should be natural and helpful. Make sure to give the user the relevant IDs and information, be sure to include all the information stated in api response dont leave any detail out even if not requested by user.",
            },
            {
                "role": "user",
                "content": f"User message: {user_message}\nRequest type: {classification}\nAPI response: {json.dumps(api_response)}",
            },
        ],
        model="meta-llama/Meta-Llama-3.1-70B-Instruct-Turbo",
    )
    print(interpret.choices[0].message.content)
    return interpret.choices[0].message.content

# Main function to process the user request
def process_request(user_message: str) -> str:
    # Classify the message
    classification = classify_message(user_message)
    
    # Extract information based on classification
    info = extract_info(user_message, classification)
    
    # Make API call
    api_response = make_api_call(classification, info)
    
    # Interpret the response
    interpretation = interpret_response(user_message, classification, api_response)
    
    return interpretation

# Define the API documentation with the repository link
api_documentation = """
## Available API Methods

### 1. Create Order
- **Endpoint:** POST /orders
- **Inputs:**
  - user_id: (Optional) The user's ID or name.
  - items: List of ordered items with `item_id` and `quantity`.

### 2. Cancel Order
- **Endpoint:** POST /orders/{order_id}/cancel
- **Inputs:**
  - order_id: The ID of the order to be canceled.

### 3. Check Order Status
- **Endpoint:** GET /orders/{order_id}/status
- **Inputs:**
  - order_id: The ID of the order to check status.

### 4. Create Invoice
- **Endpoint:** POST /invoices
- **Inputs:**
  - order_id: The ID of the order.
  - amount: The invoice amount.

### 5. Get Invoice Details
- **Endpoint:** GET /invoices/{invoice_id}
- **Inputs:**
  - invoice_id: The ID of the invoice to retrieve.

### 6. Create Payment
- **Endpoint:** POST /payments
- **Inputs:**
  - invoice_id: The ID of the invoice to pay.
  - order_id: The ID of the associated order.
  - amount: The payment amount.

You can use these examples when interacting with the system.

For more details on the API, including the routes and implementation, visit the GitHub repository:
[Order Management API Repository](https://github.com/akash-mondal/order-management-api)
"""

# Build the Gradio interface
with gr.Blocks() as demo:
    gr.Markdown("# Function Calling Demo")
    gr.Markdown("""
    This is a demo for performing function calls using custom API endpoints. The demo uses Together AI for language models (LLMs), where:
    
    - **Mixtral 8x7B** is used to extract API information from natural language.
    - **Llama 3.1 70B** is used to classify which API to route to.
    - **Llama 3.1 8B** is used to interpret API responses into natural language for the end user.
    """)

    with gr.Tab("User Input"):
        user_input = gr.Textbox(label="Enter your message")
        output = gr.Textbox(label="Response")
        submit_button = gr.Button("Submit")
        
        def handle_submit(user_message):
            return process_request(user_message)
        
        submit_button.click(handle_submit, inputs=user_input, outputs=output)
    
    with gr.Tab("API Documentation"):
        gr.Markdown(api_documentation)

# Run the demo
demo.launch()