File size: 18,103 Bytes
8741abe |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 |
# coding=utf-8
# Copyright 2023 The HuggingFace Inc. team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import copy
import os
import random
from typing import Any, Dict, Iterable, Optional, Union
import numpy as np
import pandas as pd
import torch
import torch.nn.functional as F
def enable_full_determinism(seed: int):
"""
Helper function for reproducible behavior during distributed training. See
- https://pytorch.org/docs/stable/notes/randomness.html for pytorch
"""
# set seed first
set_seed(seed)
# Enable PyTorch deterministic mode. This potentially requires either the environment
# variable 'CUDA_LAUNCH_BLOCKING' or 'CUBLAS_WORKSPACE_CONFIG' to be set,
# depending on the CUDA version, so we set them both here
os.environ["CUDA_LAUNCH_BLOCKING"] = "1"
os.environ["CUBLAS_WORKSPACE_CONFIG"] = ":16:8"
torch.use_deterministic_algorithms(True)
# Enable CUDNN deterministic mode
torch.backends.cudnn.deterministic = True
torch.backends.cudnn.benchmark = False
def set_seed(seed: int):
"""
Args:
Helper function for reproducible behavior to set the seed in `random`, `numpy`, `torch`.
seed (`int`): The seed to set.
"""
random.seed(seed)
np.random.seed(seed)
torch.manual_seed(seed)
torch.cuda.manual_seed_all(seed)
# ^^ safe to call this function even if cuda is not available
# Adapted from torch-ema https://github.com/fadel/pytorch_ema/blob/master/torch_ema/ema.py#L14
class EMA:
"""
Exponential Moving Average of models weights
"""
def __init__(
self,
parameters: Iterable[torch.nn.Parameter],
decay: float = 0.9999,
min_decay: float = 0.0,
update_after_step: int = 0,
use_ema_warmup: bool = False,
inv_gamma: Union[float, int] = 1.0,
power: Union[float, int] = 2 / 3,
model_cls: Optional[Any] = None,
model_config: Dict[str, Any] = None,
**kwargs,
):
"""
Args:
parameters (Iterable[torch.nn.Parameter]): The parameters to track.
decay (float): The decay factor for the exponential moving average.
min_decay (float): The minimum decay factor for the exponential moving average.
update_after_step (int): The number of steps to wait before starting to update the EMA weights.
use_ema_warmup (bool): Whether to use EMA warmup.
inv_gamma (float):
Inverse multiplicative factor of EMA warmup. Default: 1. Only used if `use_ema_warmup` is True.
power (float): Exponential factor of EMA warmup. Default: 2/3. Only used if `use_ema_warmup` is True.
device (Optional[Union[str, torch.device]]): The device to store the EMA weights on. If None, the EMA
weights will be stored on CPU.
@crowsonkb's notes on EMA Warmup:
If gamma=1 and power=1, implements a simple average. gamma=1, power=2/3 are good values for models you plan
to train for a million or more steps (reaches decay factor 0.999 at 31.6K steps, 0.9999 at 1M steps),
gamma=1, power=3/4 for models you plan to train for less (reaches decay factor 0.999 at 10K steps, 0.9999
at 215.4k steps).
"""
parameters = list(parameters)
self.shadow_params = [p.clone().detach() for p in parameters]
self.temp_stored_params = None
self.decay = decay
self.min_decay = min_decay
self.update_after_step = update_after_step
self.use_ema_warmup = use_ema_warmup
self.inv_gamma = inv_gamma
self.power = power
self.optimization_step = 0
self.cur_decay_value = None # set in `step()`
self.model_cls = model_cls
self.model_config = model_config
@classmethod
def from_pretrained(cls, path, model_cls) -> "EMA":
_, ema_kwargs = model_cls.load_config(path, return_unused_kwargs=True)
model = model_cls.from_pretrained(path)
ema_model = cls(model.parameters(), model_cls=model_cls, model_config=model.config)
ema_model.load_state_dict(ema_kwargs)
return ema_model
def save_pretrained(self, path):
if self.model_cls is None:
raise ValueError("`save_pretrained` can only be used if `model_cls` was defined at __init__.")
if self.model_config is None:
raise ValueError("`save_pretrained` can only be used if `model_config` was defined at __init__.")
model = self.model_cls.from_config(self.model_config)
state_dict = self.state_dict()
state_dict.pop("shadow_params", None)
model.register_to_config(**state_dict)
self.copy_to(model.parameters())
model.save_pretrained(path)
def get_decay(self, optimization_step: int) -> float:
"""
Compute the decay factor for the exponential moving average.
"""
step = max(0, optimization_step - self.update_after_step - 1)
if step <= 0:
return 0.0
if self.use_ema_warmup:
cur_decay_value = 1 - (1 + step / self.inv_gamma) ** -self.power
else:
cur_decay_value = (1 + step) / (10 + step)
cur_decay_value = min(cur_decay_value, self.decay)
# make sure decay is not smaller than min_decay
cur_decay_value = max(cur_decay_value, self.min_decay)
return cur_decay_value
@torch.no_grad()
def step(self, parameters: Iterable[torch.nn.Parameter]):
parameters = list(parameters)
self.optimization_step += 1
# Compute the decay factor for the exponential moving average.
decay = self.get_decay(self.optimization_step)
self.cur_decay_value = decay
one_minus_decay = 1 - decay
for s_param, param in zip(self.shadow_params, parameters):
if param.requires_grad:
s_param.sub_(one_minus_decay * (s_param - param))
else:
s_param.copy_(param)
torch.cuda.empty_cache()
def copy_to(self, parameters: Iterable[torch.nn.Parameter]) -> None:
"""
Copy current averaged parameters into given collection of parameters.
Args:
parameters: Iterable of `torch.nn.Parameter`; the parameters to be
updated with the stored moving averages. If `None`, the parameters with which this
`ExponentialMovingAverage` was initialized will be used.
"""
parameters = list(parameters)
for s_param, param in zip(self.shadow_params, parameters):
param.data.copy_(s_param.to(param.device).data)
def to(self, device=None, dtype=None) -> None:
r"""Move internal buffers of the ExponentialMovingAverage to `device`.
Args:
device: like `device` argument to `torch.Tensor.to`
"""
# .to() on the tensors handles None correctly
self.shadow_params = [
p.to(device=device, dtype=dtype) if p.is_floating_point() else p.to(device=device)
for p in self.shadow_params
]
def state_dict(self) -> dict:
r"""
Returns the state of the ExponentialMovingAverage as a dict. This method is used by accelerate during
checkpointing to save the ema state dict.
"""
# Following PyTorch conventions, references to tensors are returned:
# "returns a reference to the state and not its copy!" -
# https://pytorch.org/tutorials/beginner/saving_loading_models.html#what-is-a-state-dict
return {
"decay": self.decay,
"min_decay": self.min_decay,
"optimization_step": self.optimization_step,
"update_after_step": self.update_after_step,
"use_ema_warmup": self.use_ema_warmup,
"inv_gamma": self.inv_gamma,
"power": self.power,
"shadow_params": self.shadow_params,
}
def store(self, parameters: Iterable[torch.nn.Parameter]) -> None:
r"""
Args:
Save the current parameters for restoring later.
parameters: Iterable of `torch.nn.Parameter`; the parameters to be
temporarily stored.
"""
self.temp_stored_params = [param.detach().cpu().clone() for param in parameters]
def restore(self, parameters: Iterable[torch.nn.Parameter]) -> None:
r"""
Args:
Restore the parameters stored with the `store` method. Useful to validate the model with EMA parameters without:
affecting the original optimization process. Store the parameters before the `copy_to()` method. After
validation (or model saving), use this to restore the former parameters.
parameters: Iterable of `torch.nn.Parameter`; the parameters to be
updated with the stored parameters. If `None`, the parameters with which this
`ExponentialMovingAverage` was initialized will be used.
"""
if self.temp_stored_params is None:
raise RuntimeError("This ExponentialMovingAverage has no `store()`ed weights to `restore()`")
for c_param, param in zip(self.temp_stored_params, parameters):
param.data.copy_(c_param.data)
# Better memory-wise.
self.temp_stored_params = None
def load_state_dict(self, state_dict: dict) -> None:
r"""
Args:
Loads the ExponentialMovingAverage state. This method is used by accelerate during checkpointing to save the
ema state dict.
state_dict (dict): EMA state. Should be an object returned
from a call to :meth:`state_dict`.
"""
# deepcopy, to be consistent with module API
state_dict = copy.deepcopy(state_dict)
self.decay = state_dict.get("decay", self.decay)
if self.decay < 0.0 or self.decay > 1.0:
raise ValueError("Decay must be between 0 and 1")
self.min_decay = state_dict.get("min_decay", self.min_decay)
if not isinstance(self.min_decay, float):
raise ValueError("Invalid min_decay")
self.optimization_step = state_dict.get("optimization_step", self.optimization_step)
if not isinstance(self.optimization_step, int):
raise ValueError("Invalid optimization_step")
self.update_after_step = state_dict.get("update_after_step", self.update_after_step)
if not isinstance(self.update_after_step, int):
raise ValueError("Invalid update_after_step")
self.use_ema_warmup = state_dict.get("use_ema_warmup", self.use_ema_warmup)
if not isinstance(self.use_ema_warmup, bool):
raise ValueError("Invalid use_ema_warmup")
self.inv_gamma = state_dict.get("inv_gamma", self.inv_gamma)
if not isinstance(self.inv_gamma, (float, int)):
raise ValueError("Invalid inv_gamma")
self.power = state_dict.get("power", self.power)
if not isinstance(self.power, (float, int)):
raise ValueError("Invalid power")
shadow_params = state_dict.get("shadow_params", None)
if shadow_params is not None:
self.shadow_params = shadow_params
if not isinstance(self.shadow_params, list):
raise ValueError("shadow_params must be a list")
if not all(isinstance(p, torch.Tensor) for p in self.shadow_params):
raise ValueError("shadow_params must all be Tensors")
# calculates entropy over each pixel distribution
def pixel_entropy_per_percent_masked_bucket(logits, input_ids, mask_id):
# only calculated entropy over image tokens that were masked in the original image
masked_tokens = input_ids == mask_id
num_masked_pixels = masked_tokens.sum(-1)
probs = F.softmax(logits, dim=-1)
log_probs = F.log_softmax(logits, dim=-1)
entropy_per_pixel = -((probs * log_probs).sum(-1))
# the predictions for non-masked aren't used, so set their entropies to zero
entropy_per_pixel[~masked_tokens] = 0
entropy_per_image_numerator = entropy_per_pixel.sum(-1)
entropy_per_image = entropy_per_image_numerator / num_masked_pixels
total_buckets = 10
masked_buckets = input_ids_to_masked_buckets(input_ids, mask_id, total_buckets)
entropy_by_masked_bucket = average_by_buckets(entropy_per_image, masked_buckets, total_buckets)
return entropy_by_masked_bucket
# calculates entropy over the averaged distribution of pixels for the whole image
def image_entropy_per_percent_masked_bucket(logits, input_ids, mask_id):
# only calculated entropy over image tokens that were masked in the original image
masked_tokens = input_ids == mask_id
num_masked_pixels = masked_tokens.sum(-1, keepdim=True)
pixel_probs = F.softmax(logits, dim=-1)
pixel_probs[~masked_tokens] = 0
image_probs_numerator = pixel_probs.sum(-2)
image_probs = image_probs_numerator / num_masked_pixels
image_log_probs = image_probs.log()
entropy_per_image = -((image_probs * image_log_probs).sum(-1))
total_buckets = 10
masked_buckets = input_ids_to_masked_buckets(input_ids, mask_id, total_buckets)
entropy_by_masked_bucket = average_by_buckets(entropy_per_image, masked_buckets, total_buckets)
return entropy_by_masked_bucket
def cross_entropy_per_percent_masked_bucket(logits, labels, input_ids, mask_id, output_size, label_smoothing):
cross_entropy_per_image = F.cross_entropy(
logits.view(-1, output_size),
labels.view(-1),
ignore_index=-100,
label_smoothing=label_smoothing,
reduction="none",
)
total_buckets = 10
masked_buckets = input_ids_to_masked_buckets(input_ids, mask_id, total_buckets)
cross_entropy_by_percent_masked_bucket = average_by_buckets(cross_entropy_per_image, masked_buckets, total_buckets)
return cross_entropy_by_percent_masked_bucket
def token_probability_distributions_per_percent_masked_bucket(logits, input_ids, mask_id):
probs = F.softmax(logits, dim=-1)
total_buckets = 10
masked_buckets = input_ids_to_masked_buckets(input_ids, mask_id, total_buckets)
data = []
for bucket_idx in range(total_buckets):
indices_for_bucket = masked_buckets[masked_buckets == bucket_idx]
# It's ok if none were noised in the range of this bucket. This
# function will be called for a later training step where it's likely
# there will be an element noised in the range.
if indices_for_bucket.shape[0] == 0:
continue
index_for_bucket = indices_for_bucket[0]
image_probs = probs[index_for_bucket]
# find the index of a masked pixel for the image
input_ids_for_image = input_ids[index_for_bucket]
masked_pixels_probs = image_probs[input_ids_for_image == mask_id]
masked_pixel_probs = masked_pixels_probs[0]
masked_pixel_probs = masked_pixel_probs.cpu().numpy()
for masked_pixel_prob in masked_pixel_probs:
data.append({"bucket": bucket_idx, "masked_pixel_prob": masked_pixel_prob})
df = pd.DataFrame(data)
return df
def average_by_buckets(values, masked_buckets, total_buckets):
unique_buckets, bucket_counts = masked_buckets.unique(dim=0, return_counts=True)
numerator = torch.zeros(total_buckets, device=values.device)
numerator.scatter_add_(0, masked_buckets, values)
# default value is one because the buckets for which there aren't
# any values will have a numerator of zero. So we just need to not divide
# by zero.
denominator = torch.ones(total_buckets, device=values.device, dtype=torch.long)
denominator[unique_buckets] = bucket_counts
averaged_by_buckets = numerator / denominator
return averaged_by_buckets
def input_ids_to_masked_buckets(input_ids, mask_id, total_buckets=10):
assert total_buckets == 10
masked_percent = (input_ids == mask_id).sum(-1) / input_ids.shape[-1]
# we do not formally use timesteps to noise images. Instead, we mask a percent
# of the pixels. We don't want to log entropy for every mask percent between 0 and 1,
# and we also want to track how the entropy evolves over time w/in a range of mask
# percents that should have similar entropy. So we bucket the masked percents into a
# fixed number of buckets
# we could generalize this later if needed but for now, let's just assume a fixed
# number of 10 buckets.
# How this maps to a bucket index:
# (mask) * bucket_index +
# (mask_1) * bucket_index_1
#
# -> Where the mask is true will be set to the expected bucket index,
# where the mask is false will be set to 0.
#
# Given the probabilities are between 0 and 1, each masked_percent will get mapped
# to a timestep by one and only one of the masks.
masked_buckets = (
((0 < masked_percent) & (masked_percent <= 0.1)) * 0
+ ((0.1 < masked_percent) & (masked_percent <= 0.2)) * 1
+ ((0.2 < masked_percent) & (masked_percent <= 0.3)) * 2
+ ((0.3 < masked_percent) & (masked_percent <= 0.4)) * 3
+ ((0.4 < masked_percent) & (masked_percent <= 0.5)) * 4
+ ((0.5 < masked_percent) & (masked_percent <= 0.6)) * 5
+ ((0.6 < masked_percent) & (masked_percent <= 0.7)) * 6
+ ((0.7 < masked_percent) & (masked_percent <= 0.8)) * 7
+ ((0.8 < masked_percent) & (masked_percent <= 0.9)) * 8
+ ((0.9 < masked_percent) & (masked_percent <= 1.0)) * 9
)
return masked_buckets
|