File size: 9,228 Bytes
8741abe
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
import torch
import torch.nn.functional as F
from transformers import AutoConfig
from .modeling_utils import ConfigMixin, ModelMixin, register_to_config
from .sampling import cosine_schedule, mask_by_random_topk
from .phi import PhiForCausalLM

try:
    import xformers.ops as xops

    is_xformers_available = True
except ImportError:
    is_xformers_available = False


class Showo(ModelMixin, ConfigMixin):
    _supports_gradient_checkpointing = True

    @register_to_config
    def __init__(
            self,
            w_clip_vit,
            vocab_size,
            llm_vocab_size,
            llm_model_path='',
            codebook_size=8192,
            num_vq_tokens=256,
            **kwargs,
    ):
        super().__init__()
        self.vocab_size = vocab_size
        self.register_to_config(mask_token_id=vocab_size - 1)
        config = AutoConfig.from_pretrained(llm_model_path)
        self.showo = PhiForCausalLM(config)
        self.showo.resize_token_embeddings(self.vocab_size)
        self.output_size = self.vocab_size

        if self.w_clip_vit:
            self.mm_projector = torch.nn.Sequential(
                torch.nn.Linear(1024, 2048),
                torch.nn.GELU(),
                torch.nn.Linear(2048, 2048)
            )

    def _set_gradient_checkpointing(self, module, value=False):
        self.gradient_checkpointing = True

    def forward(
            self,
            input_ids,
            input_embeddings=None,
            attention_mask=None,
            labels=None,
            label_smoothing=0.0,
            config=None,
            labels_mask_text=None,
            labels_mask_image=None,
            **kwargs,
    ):

        if input_embeddings is None:
            logits = self.showo(input_ids=input_ids, attention_mask=attention_mask)['logits']
        else:
            logits = self.showo(inputs_embeds=input_embeddings, attention_mask=attention_mask)['logits']

        if labels is not None:
            raise NotImplementedError

        return logits

    def t2i_generate(
            self,
            input_ids: torch.LongTensor = None,
            uncond_input_ids: torch.LongTensor = None,
            attention_mask=None,
            temperature=1.0,
            timesteps=18,  # ideal number of steps is 18 in maskgit paper
            guidance_scale=0,
            noise_schedule=cosine_schedule,
            generator: torch.Generator = None,
            uni_prompting=None,
            config=None,
            **kwargs,
    ):
        """
        Generate 1:1 similar to the original MaskGit repo
        https://github.com/google-research/maskgit/blob/main/maskgit/libml/parallel_decode.py#L79
        """
        # begin with all image token ids masked
        mask_token_id = self.config.mask_token_id
        seq_len = config.model.showo.num_vq_tokens

        input_ids_minus_lm_vocab_size = input_ids[:, -(seq_len + 1):-1].clone()
        input_ids_minus_lm_vocab_size = torch.where(input_ids_minus_lm_vocab_size == mask_token_id,
                                                    mask_token_id,
                                                    input_ids_minus_lm_vocab_size - config.model.showo.llm_vocab_size - 10)
        # import ipdb
        # ipdb.set_trace()
        if uncond_input_ids is not None:
            uncond_prefix = uncond_input_ids[:, :config.dataset.preprocessing.max_seq_length + 1]

        for step in range(timesteps):
            if uncond_input_ids is not None and guidance_scale > 0:
                uncond_input_ids = torch.cat(
                    [uncond_prefix, input_ids[:, config.dataset.preprocessing.max_seq_length + 1:]], dim=1)
                model_input = torch.cat([input_ids, uncond_input_ids])
                cond_logits, uncond_logits = self(model_input, attention_mask=attention_mask).chunk(2)
                # logits = uncond_logits + guidance_scale * (cond_logits - uncond_logits)
                # it seems that muse has different cfg setting
                logits = (1 + guidance_scale) * cond_logits - guidance_scale * uncond_logits
                logits = logits[:, -(seq_len + 1):-1, config.model.showo.llm_vocab_size + 10:-1]
            else:
                logits = self(input_ids, attention_mask=attention_mask)
                logits = logits[:, -(seq_len + 1):-1, config.model.showo.llm_vocab_size + 10:-1]

            probs = logits.softmax(dim=-1)
            sampled = probs.reshape(-1, logits.size(-1))
            sampled_ids = torch.multinomial(sampled, 1, generator=generator)[:, 0].view(*logits.shape[:-1])

            unknown_map = input_ids_minus_lm_vocab_size == mask_token_id
            sampled_ids = torch.where(unknown_map, sampled_ids, input_ids_minus_lm_vocab_size)
            # Defines the mask ratio for the next round. The number to mask out is
            # determined by mask_ratio * unknown_number_in_the_beginning.
            ratio = 1.0 * (step + 1) / timesteps
            mask_ratio = noise_schedule(torch.tensor(ratio))
            # Computes the probabilities of each selected tokens.
            selected_probs = torch.gather(probs, -1, sampled_ids.long()[..., None])
            selected_probs = selected_probs.squeeze(-1)

            # Ignores the tokens given in the input by overwriting their confidence.
            selected_probs = torch.where(unknown_map, selected_probs, torch.finfo(selected_probs.dtype).max)
            # Gets mask lens for each sample in the batch according to the mask ratio.
            mask_len = (seq_len * mask_ratio).floor().unsqueeze(0).to(logits.device)
            # Keeps at least one of prediction in this round and also masks out at least
            # one and for the next iteration
            mask_len = torch.max(
                torch.tensor([1], device=logits.device), torch.min(unknown_map.sum(dim=-1, keepdim=True) - 1, mask_len)
            )
            # Adds noise for randomness
            temperature = temperature * (1.0 - ratio)
            masking = mask_by_random_topk(mask_len, selected_probs, temperature, generator=generator)
            # Masks tokens with lower confidence.
            input_ids[:, -(seq_len + 1):-1] = torch.where(masking, mask_token_id,
                                                          sampled_ids + config.model.showo.llm_vocab_size + 10)
            input_ids_minus_lm_vocab_size = torch.where(masking, mask_token_id, sampled_ids)

        return sampled_ids

    @torch.no_grad()
    def mmu_generate(self, idx=None, input_embeddings=None, attention_mask=None, max_new_tokens=100, temperature=1.0, top_k=None, eot_token=None):
        """
        Take a conditioning sequence of indices idx (LongTensor of shape (b,t)) and complete
        the sequence max_new_tokens times, feeding the predictions back into the model each time.
        Most likely you'll want to make sure to be in model.eval() mode of operation for this.
        """
        try:
            device = idx.device
        except:
            device = input_embeddings.device

        result = []
        for _ in range(max_new_tokens):
            # if the sequence context is growing too long we must crop it at block_size
            # idx_cond = idx if idx.size(1) <= self.config.block_size else idx[:, -self.config.block_size:]
            # forward the model to get the logits for the index in the sequence
            # logits, _ = self(idx_cond)
            logits = self(idx, input_embeddings=input_embeddings, attention_mask=attention_mask)

            L = attention_mask.shape[-1]
            attention_mask = attention_mask.squeeze()
            attention_mask_a = torch.hstack(
                [
                    attention_mask,  # L, L
                    torch.zeros((L, 1)).to(device) + torch.finfo(logits.dtype).min,
                ]
            )
            attention_mask_b = torch.vstack(
                [
                    attention_mask_a,  # L, L+1
                    torch.hstack([attention_mask[-1, :], torch.tensor([0]).to(device)]).unsqueeze(0),
                ]
            )
            attention_mask = attention_mask_b

            # pluck the logits at the final step and scale by desired temperature
            logits = logits[:, -1, :] / temperature
            # optionally crop the logits to only the top k options
            if top_k is not None:
                v, _ = torch.topk(logits, min(top_k, logits.size(-1)))
                logits[logits < v[:, [-1]]] = -float('Inf')
            # apply softmax to convert logits to (normalized) probabilities
            probs = F.softmax(logits, dim=-1)
            # sample from the distribution
            idx_next = torch.multinomial(probs, num_samples=1)
            result.append(idx_next[0][0])
            # append sampled index to the running sequence and continue
            if self.config.w_clip_vit:
                idx_next_embeddings = self.showo.model.embed_tokens(idx_next)
                input_embeddings = torch.cat([input_embeddings, idx_next_embeddings], dim=1)
            else:
                idx = torch.cat((idx, idx_next), dim=1)

            if eot_token is not None and idx_next.cpu() == eot_token:
                break

        return result