File size: 15,073 Bytes
8741abe |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 |
from dataclasses import dataclass, field
import numpy as np
import torch
import torch.nn as nn
from .common_modules import *
from .modeling_utils import ConfigMixin, ModelMixin, register_to_config
from .misc import *
import math
class Updateable:
def do_update_step(
self, epoch: int, global_step: int, on_load_weights: bool = False
):
for attr in self.__dir__():
if attr.startswith("_"):
continue
try:
module = getattr(self, attr)
except:
continue # ignore attributes like property, which can't be retrived using getattr?
if isinstance(module, Updateable):
module.do_update_step(
epoch, global_step, on_load_weights=on_load_weights
)
self.update_step(epoch, global_step, on_load_weights=on_load_weights)
def do_update_step_end(self, epoch: int, global_step: int):
for attr in self.__dir__():
if attr.startswith("_"):
continue
try:
module = getattr(self, attr)
except:
continue # ignore attributes like property, which can't be retrived using getattr?
if isinstance(module, Updateable):
module.do_update_step_end(epoch, global_step)
self.update_step_end(epoch, global_step)
def update_step(self, epoch: int, global_step: int, on_load_weights: bool = False):
# override this method to implement custom update logic
# if on_load_weights is True, you should be careful doing things related to model evaluations,
# as the models and tensors are not guarenteed to be on the same device
pass
def update_step_end(self, epoch: int, global_step: int):
pass
class VQGANEncoder(ModelMixin, ConfigMixin):
@dataclass
class Config:
ch: int = 128
ch_mult: List[int] = field(default_factory=lambda: [1, 2, 2, 4, 4])
num_res_blocks: List[int] = field(default_factory=lambda: [4, 3, 4, 3, 4])
attn_resolutions: List[int] = field(default_factory=lambda: [5])
dropout: float = 0.0
in_ch: int = 3
out_ch: int = 3
resolution: int = 256
z_channels: int = 13
double_z: bool = False
def __init__(self,
ch: int = 128,
ch_mult: List[int] = [1, 2, 2, 4, 4],
num_res_blocks: List[int] = [4, 3, 4, 3, 4],
attn_resolutions: List[int] = [5],
dropout: float = 0.0,
in_ch: int = 3,
out_ch: int = 3,
resolution: int = 256,
z_channels: int = 13,
double_z: bool = False):
super().__init__()
self.ch = ch
self.temb_ch = 0
self.num_resolutions = len(ch_mult)
self.num_res_blocks = num_res_blocks
self.resolution = resolution
self.in_ch = in_ch
# downsampling
self.conv_in = torch.nn.Conv2d(
self.in_ch, self.ch, kernel_size=3, stride=1, padding=1
)
curr_res = self.resolution
in_ch_mult = (1,) + tuple(ch_mult)
self.down = nn.ModuleList()
for i_level in range(self.num_resolutions):
block = nn.ModuleList()
attn = nn.ModuleList()
block_in = self.ch * in_ch_mult[i_level]
block_out = self.ch * ch_mult[i_level]
for i_block in range(self.num_res_blocks[i_level]):
block.append(
ResnetBlock(
in_channels=block_in,
out_channels=block_out,
temb_channels=self.temb_ch,
dropout=dropout,
)
)
block_in = block_out
if curr_res in attn_resolutions:
attn.append(AttnBlock(block_in))
down = nn.Module()
down.block = block
down.attn = attn
if i_level != self.num_resolutions - 1:
down.downsample = Downsample(block_in, True)
curr_res = curr_res // 2
self.down.append(down)
# middle
self.mid = nn.Module()
self.mid.block_1 = ResnetBlock(
in_channels=block_in,
out_channels=block_in,
temb_channels=self.temb_ch,
dropout=dropout,
)
self.mid.attn_1 = AttnBlock(block_in)
self.mid.block_2 = ResnetBlock(
in_channels=block_in,
out_channels=block_in,
temb_channels=self.temb_ch,
dropout=dropout,
)
self.norm_out = Normalize(block_in)
self.conv_out = torch.nn.Conv2d(
block_in,
2 * z_channels if double_z else z_channels,
kernel_size=3,
stride=1,
padding=1,
)
self.quant_conv = torch.nn.Conv2d(z_channels, z_channels, 1)
# for param in self.parameters():
# broadcast(param, src=0)
def forward(self, x):
# timestep embedding
temb = None
# downsampling
hs = [self.conv_in(x)]
for i_level in range(self.num_resolutions):
for i_block in range(self.num_res_blocks[i_level]):
h = self.down[i_level].block[i_block](hs[-1], temb)
if len(self.down[i_level].attn) > 0:
h = self.down[i_level].attn[i_block](h)
hs.append(h)
if i_level != self.num_resolutions - 1:
hs.append(self.down[i_level].downsample(hs[-1]))
# middle
h = hs[-1]
h = self.mid.block_1(h, temb)
h = self.mid.attn_1(h)
h = self.mid.block_2(h, temb)
# end
h = self.norm_out(h)
h = nonlinearity(h)
h = self.conv_out(h)
h = self.quant_conv(h)
return h
class LFQuantizer(nn.Module):
def __init__(self, num_codebook_entry: int = -1,
codebook_dim: int = 13,
beta: float = 0.25,
entropy_multiplier: float = 0.1,
commit_loss_multiplier: float = 0.1, ):
super().__init__()
self.codebook_size = 2 ** codebook_dim
print(
f"Look-up free quantizer with codebook size: {self.codebook_size}"
)
self.e_dim = codebook_dim
self.beta = beta
indices = torch.arange(self.codebook_size)
binary = (
indices.unsqueeze(1)
>> torch.arange(codebook_dim - 1, -1, -1, dtype=torch.long)
) & 1
embedding = binary.float() * 2 - 1
self.register_buffer("embedding", embedding)
self.register_buffer(
"power_vals", 2 ** torch.arange(codebook_dim - 1, -1, -1)
)
self.commit_loss_multiplier = commit_loss_multiplier
self.entropy_multiplier = entropy_multiplier
def get_indices(self, z_q):
return (
(self.power_vals.reshape(1, -1, 1, 1) * (z_q > 0).float())
.sum(1, keepdim=True)
.long()
)
def get_codebook_entry(self, indices, shape=None):
if shape is None:
h, w = int(math.sqrt(indices.shape[-1])), int(math.sqrt(indices.shape[-1]))
else:
h, w = shape
b, _ = indices.shape
indices = indices.reshape(-1)
z_q = self.embedding[indices]
z_q = z_q.view(b, h, w, -1)
# reshape back to match original input shape
z_q = z_q.permute(0, 3, 1, 2).contiguous()
return z_q
def forward(self, z, get_code=False):
"""
Inputs the output of the encoder network z and maps it to a discrete
one-hot vector that is the index of the closest embedding vector e_j
z (continuous) -> z_q (discrete)
z.shape = (batch, channel, height, width)
quantization pipeline:
1. get encoder input (B,C,H,W)
2. flatten input to (B*H*W,C)
"""
if get_code:
return self.get_codebook_entry(z)
# reshape z -> (batch, height, width, channel) and flatten
z = z.permute(0, 2, 3, 1).contiguous()
z_flattened = z.view(-1, self.e_dim)
ge_zero = (z_flattened > 0).float()
ones = torch.ones_like(z_flattened)
z_q = ones * ge_zero + -ones * (1 - ge_zero)
# preserve gradients
z_q = z_flattened + (z_q - z_flattened).detach()
# compute entropy loss
CatDist = torch.distributions.categorical.Categorical
logit = torch.stack(
[
-(z_flattened - torch.ones_like(z_q)).pow(2),
-(z_flattened - torch.ones_like(z_q) * -1).pow(2),
],
dim=-1,
)
cat_dist = CatDist(logits=logit)
entropy = cat_dist.entropy().mean()
mean_prob = cat_dist.probs.mean(0)
mean_entropy = CatDist(probs=mean_prob).entropy().mean()
# compute loss for embedding
commit_loss = torch.mean(
(z_q.detach() - z_flattened) ** 2
) + self.beta * torch.mean((z_q - z_flattened.detach()) ** 2)
# reshape back to match original input shape
z_q = z_q.view(z.shape)
z_q = z_q.permute(0, 3, 1, 2).contiguous()
return {
"z": z_q,
"quantizer_loss": commit_loss * self.commit_loss_multiplier,
"entropy_loss": (entropy - mean_entropy) * self.entropy_multiplier,
"indices": self.get_indices(z_q),
}
class VQGANDecoder(ModelMixin, ConfigMixin):
def __init__(self, ch: int = 128,
ch_mult: List[int] = [1, 1, 2, 2, 4],
num_res_blocks: List[int] = [4, 4, 3, 4, 3],
attn_resolutions: List[int] = [5],
dropout: float = 0.0,
in_ch: int = 3,
out_ch: int = 3,
resolution: int = 256,
z_channels: int = 13,
double_z: bool = False):
super().__init__()
self.ch = ch
self.temb_ch = 0
self.num_resolutions = len(ch_mult)
self.num_res_blocks = num_res_blocks
self.resolution = resolution
self.in_ch = in_ch
self.give_pre_end = False
self.z_channels = z_channels
# compute in_ch_mult, block_in and curr_res at lowest res
in_ch_mult = (1,) + tuple(ch_mult)
block_in = ch * ch_mult[self.num_resolutions - 1]
curr_res = self.resolution // 2 ** (self.num_resolutions - 1)
self.z_shape = (1, z_channels, curr_res, curr_res)
print(
"Working with z of shape {} = {} dimensions.".format(
self.z_shape, np.prod(self.z_shape)
)
)
# z to block_in
self.conv_in = torch.nn.Conv2d(
z_channels, block_in, kernel_size=3, stride=1, padding=1
)
# middle
self.mid = nn.Module()
self.mid.block_1 = ResnetBlock(
in_channels=block_in,
out_channels=block_in,
temb_channels=self.temb_ch,
dropout=dropout,
)
self.mid.attn_1 = AttnBlock(block_in)
self.mid.block_2 = ResnetBlock(
in_channels=block_in,
out_channels=block_in,
temb_channels=self.temb_ch,
dropout=dropout,
)
# upsampling
self.up = nn.ModuleList()
for i_level in reversed(range(self.num_resolutions)):
block = nn.ModuleList()
attn = nn.ModuleList()
block_out = ch * ch_mult[i_level]
for i_block in range(self.num_res_blocks[i_level]):
block.append(
ResnetBlock(
in_channels=block_in,
out_channels=block_out,
temb_channels=self.temb_ch,
dropout=dropout,
)
)
block_in = block_out
if curr_res in attn_resolutions:
attn.append(AttnBlock(block_in))
up = nn.Module()
up.block = block
up.attn = attn
if i_level != 0:
up.upsample = Upsample(block_in, True)
curr_res = curr_res * 2
self.up.insert(0, up) # prepend to get consistent order
self.norm_out = Normalize(block_in)
self.conv_out = torch.nn.Conv2d(
block_in, out_ch, kernel_size=3, stride=1, padding=1
)
self.post_quant_conv = torch.nn.Conv2d(
z_channels, z_channels, 1
)
def forward(self, z):
# assert z.shape[1:] == self.z_shape[1:]
self.last_z_shape = z.shape
# timestep embedding
temb = None
output = dict()
z = self.post_quant_conv(z)
# z to block_in
h = self.conv_in(z)
# middle
h = self.mid.block_1(h, temb)
h = self.mid.attn_1(h)
h = self.mid.block_2(h, temb)
# upsampling
for i_level in reversed(range(self.num_resolutions)):
for i_block in range(self.num_res_blocks[i_level]):
h = self.up[i_level].block[i_block](h, temb)
if len(self.up[i_level].attn) > 0:
h = self.up[i_level].attn[i_block](h)
if i_level != 0:
h = self.up[i_level].upsample(h)
# end
output["output"] = h
if self.give_pre_end:
return output
h = self.norm_out(h)
h = nonlinearity(h)
h = self.conv_out(h)
output["output"] = h
return output
class MAGVITv2(ModelMixin, ConfigMixin):
@register_to_config
def __init__(
self,
):
super().__init__()
self.encoder = VQGANEncoder()
self.decoder = VQGANDecoder()
self.quantize = LFQuantizer()
def forward(self, pixel_values, return_loss=False):
pass
def encode(self, pixel_values, return_loss=False):
hidden_states = self.encoder(pixel_values)
quantized_states = self.quantize(hidden_states)['z']
codebook_indices = self.quantize.get_indices(quantized_states).reshape(pixel_values.shape[0], -1)
output = (quantized_states, codebook_indices)
return output
def get_code(self, pixel_values):
hidden_states = self.encoder(pixel_values)
codebook_indices = self.quantize.get_indices(self.quantize(hidden_states)['z']).reshape(pixel_values.shape[0], -1)
return codebook_indices
def decode_code(self, codebook_indices, shape=None):
z_q = self.quantize.get_codebook_entry(codebook_indices, shape=shape)
reconstructed_pixel_values = self.decoder(z_q)["output"]
return reconstructed_pixel_values
if __name__ == '__main__':
encoder = VQGANEncoder()
import ipdb
ipdb.set_trace()
print() |