File size: 15,073 Bytes
8741abe
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
from dataclasses import dataclass, field
import numpy as np
import torch
import torch.nn as nn
from .common_modules import *
from .modeling_utils import ConfigMixin, ModelMixin, register_to_config
from .misc import *
import math

class Updateable:
    def do_update_step(
            self, epoch: int, global_step: int, on_load_weights: bool = False
    ):
        for attr in self.__dir__():
            if attr.startswith("_"):
                continue
            try:
                module = getattr(self, attr)
            except:
                continue  # ignore attributes like property, which can't be retrived using getattr?
            if isinstance(module, Updateable):
                module.do_update_step(
                    epoch, global_step, on_load_weights=on_load_weights
                )
        self.update_step(epoch, global_step, on_load_weights=on_load_weights)

    def do_update_step_end(self, epoch: int, global_step: int):
        for attr in self.__dir__():
            if attr.startswith("_"):
                continue
            try:
                module = getattr(self, attr)
            except:
                continue  # ignore attributes like property, which can't be retrived using getattr?
            if isinstance(module, Updateable):
                module.do_update_step_end(epoch, global_step)
        self.update_step_end(epoch, global_step)

    def update_step(self, epoch: int, global_step: int, on_load_weights: bool = False):
        # override this method to implement custom update logic
        # if on_load_weights is True, you should be careful doing things related to model evaluations,
        # as the models and tensors are not guarenteed to be on the same device
        pass

    def update_step_end(self, epoch: int, global_step: int):
        pass

class VQGANEncoder(ModelMixin, ConfigMixin):
    @dataclass
    class Config:
        ch: int = 128
        ch_mult: List[int] = field(default_factory=lambda: [1, 2, 2, 4, 4])
        num_res_blocks: List[int] = field(default_factory=lambda: [4, 3, 4, 3, 4])
        attn_resolutions: List[int] = field(default_factory=lambda: [5])
        dropout: float = 0.0
        in_ch: int = 3
        out_ch: int = 3
        resolution: int = 256
        z_channels: int = 13
        double_z: bool = False

    def __init__(self,
                 ch: int = 128,
                 ch_mult: List[int] = [1, 2, 2, 4, 4],
                 num_res_blocks: List[int] = [4, 3, 4, 3, 4],
                 attn_resolutions: List[int] = [5],
                 dropout: float = 0.0,
                 in_ch: int = 3,
                 out_ch: int = 3,
                 resolution: int = 256,
                 z_channels: int = 13,
                 double_z: bool = False):
        super().__init__()
        self.ch = ch
        self.temb_ch = 0
        self.num_resolutions = len(ch_mult)
        self.num_res_blocks = num_res_blocks
        self.resolution = resolution
        self.in_ch = in_ch
        # downsampling
        self.conv_in = torch.nn.Conv2d(
            self.in_ch, self.ch, kernel_size=3, stride=1, padding=1
        )

        curr_res = self.resolution
        in_ch_mult = (1,) + tuple(ch_mult)
        self.down = nn.ModuleList()
        for i_level in range(self.num_resolutions):
            block = nn.ModuleList()
            attn = nn.ModuleList()
            block_in = self.ch * in_ch_mult[i_level]
            block_out = self.ch * ch_mult[i_level]
            for i_block in range(self.num_res_blocks[i_level]):
                block.append(
                    ResnetBlock(
                        in_channels=block_in,
                        out_channels=block_out,
                        temb_channels=self.temb_ch,
                        dropout=dropout,
                    )
                )
                block_in = block_out
                if curr_res in attn_resolutions:
                    attn.append(AttnBlock(block_in))
            down = nn.Module()
            down.block = block
            down.attn = attn
            if i_level != self.num_resolutions - 1:
                down.downsample = Downsample(block_in, True)
                curr_res = curr_res // 2
            self.down.append(down)

        # middle
        self.mid = nn.Module()
        self.mid.block_1 = ResnetBlock(
            in_channels=block_in,
            out_channels=block_in,
            temb_channels=self.temb_ch,
            dropout=dropout,
        )
        self.mid.attn_1 = AttnBlock(block_in)
        self.mid.block_2 = ResnetBlock(
            in_channels=block_in,
            out_channels=block_in,
            temb_channels=self.temb_ch,
            dropout=dropout,
        )


        self.norm_out = Normalize(block_in)
        self.conv_out = torch.nn.Conv2d(
            block_in,
            2 * z_channels if double_z else z_channels,
            kernel_size=3,
            stride=1,
            padding=1,
        )

        self.quant_conv = torch.nn.Conv2d(z_channels, z_channels, 1)
        # for param in self.parameters():
        #     broadcast(param, src=0)

    def forward(self, x):
        # timestep embedding
        temb = None

        # downsampling
        hs = [self.conv_in(x)]
        for i_level in range(self.num_resolutions):
            for i_block in range(self.num_res_blocks[i_level]):
                h = self.down[i_level].block[i_block](hs[-1], temb)
                if len(self.down[i_level].attn) > 0:
                    h = self.down[i_level].attn[i_block](h)
                hs.append(h)
            if i_level != self.num_resolutions - 1:
                hs.append(self.down[i_level].downsample(hs[-1]))

        # middle
        h = hs[-1]
        h = self.mid.block_1(h, temb)
        h = self.mid.attn_1(h)
        h = self.mid.block_2(h, temb)

        # end
        h = self.norm_out(h)
        h = nonlinearity(h)
        h = self.conv_out(h)
        h = self.quant_conv(h)
        return h


class LFQuantizer(nn.Module):
    def __init__(self, num_codebook_entry: int = -1,
                 codebook_dim: int = 13,
                 beta: float = 0.25,
                 entropy_multiplier: float = 0.1,
                 commit_loss_multiplier: float = 0.1, ):
        super().__init__()
        self.codebook_size = 2 ** codebook_dim
        print(
            f"Look-up free quantizer with codebook size: {self.codebook_size}"
        )
        self.e_dim = codebook_dim
        self.beta = beta

        indices = torch.arange(self.codebook_size)

        binary = (
                         indices.unsqueeze(1)
                         >> torch.arange(codebook_dim - 1, -1, -1, dtype=torch.long)
                 ) & 1

        embedding = binary.float() * 2 - 1
        self.register_buffer("embedding", embedding)
        self.register_buffer(
            "power_vals", 2 ** torch.arange(codebook_dim - 1, -1, -1)
        )
        self.commit_loss_multiplier = commit_loss_multiplier
        self.entropy_multiplier = entropy_multiplier

    def get_indices(self, z_q):
        return (
            (self.power_vals.reshape(1, -1, 1, 1) * (z_q > 0).float())
            .sum(1, keepdim=True)
            .long()
        )

    def get_codebook_entry(self, indices, shape=None):
        if shape is None:
            h, w = int(math.sqrt(indices.shape[-1])), int(math.sqrt(indices.shape[-1]))
        else:
            h, w = shape
        b, _ = indices.shape
        indices = indices.reshape(-1)
        z_q = self.embedding[indices]
        z_q = z_q.view(b, h, w, -1)

        # reshape back to match original input shape
        z_q = z_q.permute(0, 3, 1, 2).contiguous()

        return z_q

    def forward(self, z, get_code=False):
        """
        Inputs the output of the encoder network z and maps it to a discrete
        one-hot vector that is the index of the closest embedding vector e_j
        z (continuous) -> z_q (discrete)
        z.shape = (batch, channel, height, width)
        quantization pipeline:
            1. get encoder input (B,C,H,W)
            2. flatten input to (B*H*W,C)
        """
        if get_code:
            return self.get_codebook_entry(z)

        # reshape z -> (batch, height, width, channel) and flatten
        z = z.permute(0, 2, 3, 1).contiguous()
        z_flattened = z.view(-1, self.e_dim)
        ge_zero = (z_flattened > 0).float()
        ones = torch.ones_like(z_flattened)
        z_q = ones * ge_zero + -ones * (1 - ge_zero)

        # preserve gradients
        z_q = z_flattened + (z_q - z_flattened).detach()

        # compute entropy loss
        CatDist = torch.distributions.categorical.Categorical
        logit = torch.stack(
            [
                -(z_flattened - torch.ones_like(z_q)).pow(2),
                -(z_flattened - torch.ones_like(z_q) * -1).pow(2),
            ],
            dim=-1,
        )
        cat_dist = CatDist(logits=logit)
        entropy = cat_dist.entropy().mean()
        mean_prob = cat_dist.probs.mean(0)
        mean_entropy = CatDist(probs=mean_prob).entropy().mean()

        # compute loss for embedding
        commit_loss = torch.mean(
            (z_q.detach() - z_flattened) ** 2
        ) + self.beta * torch.mean((z_q - z_flattened.detach()) ** 2)

        # reshape back to match original input shape
        z_q = z_q.view(z.shape)
        z_q = z_q.permute(0, 3, 1, 2).contiguous()

        return {
            "z": z_q,
            "quantizer_loss": commit_loss * self.commit_loss_multiplier,
            "entropy_loss": (entropy - mean_entropy) * self.entropy_multiplier,
            "indices": self.get_indices(z_q),
        }


class VQGANDecoder(ModelMixin, ConfigMixin):
    def __init__(self, ch: int = 128,
                 ch_mult: List[int] = [1, 1, 2, 2, 4],
                 num_res_blocks: List[int] = [4, 4, 3, 4, 3],
                 attn_resolutions: List[int] = [5],
                 dropout: float = 0.0,
                 in_ch: int = 3,
                 out_ch: int = 3,
                 resolution: int = 256,
                 z_channels: int = 13,
                 double_z: bool = False):
        super().__init__()
        self.ch = ch
        self.temb_ch = 0
        self.num_resolutions = len(ch_mult)
        self.num_res_blocks = num_res_blocks
        self.resolution = resolution
        self.in_ch = in_ch
        self.give_pre_end = False

        self.z_channels = z_channels
        # compute in_ch_mult, block_in and curr_res at lowest res
        in_ch_mult = (1,) + tuple(ch_mult)
        block_in = ch * ch_mult[self.num_resolutions - 1]
        curr_res = self.resolution // 2 ** (self.num_resolutions - 1)
        self.z_shape = (1, z_channels, curr_res, curr_res)
        print(
            "Working with z of shape {} = {} dimensions.".format(
                self.z_shape, np.prod(self.z_shape)
            )
        )

        # z to block_in
        self.conv_in = torch.nn.Conv2d(
            z_channels, block_in, kernel_size=3, stride=1, padding=1
        )

        # middle
        self.mid = nn.Module()
        self.mid.block_1 = ResnetBlock(
            in_channels=block_in,
            out_channels=block_in,
            temb_channels=self.temb_ch,
            dropout=dropout,
        )
        self.mid.attn_1 = AttnBlock(block_in)
        self.mid.block_2 = ResnetBlock(
            in_channels=block_in,
            out_channels=block_in,
            temb_channels=self.temb_ch,
            dropout=dropout,
        )

        # upsampling
        self.up = nn.ModuleList()
        for i_level in reversed(range(self.num_resolutions)):
            block = nn.ModuleList()
            attn = nn.ModuleList()
            block_out = ch * ch_mult[i_level]
            for i_block in range(self.num_res_blocks[i_level]):
                block.append(
                    ResnetBlock(
                        in_channels=block_in,
                        out_channels=block_out,
                        temb_channels=self.temb_ch,
                        dropout=dropout,
                    )
                )
                block_in = block_out
                if curr_res in attn_resolutions:
                    attn.append(AttnBlock(block_in))
            up = nn.Module()
            up.block = block
            up.attn = attn
            if i_level != 0:
                up.upsample = Upsample(block_in, True)
                curr_res = curr_res * 2
            self.up.insert(0, up)  # prepend to get consistent order

        self.norm_out = Normalize(block_in)
        self.conv_out = torch.nn.Conv2d(
            block_in, out_ch, kernel_size=3, stride=1, padding=1
        )
        self.post_quant_conv = torch.nn.Conv2d(
            z_channels, z_channels, 1
        )


    def forward(self, z):
        # assert z.shape[1:] == self.z_shape[1:]
        self.last_z_shape = z.shape
        # timestep embedding
        temb = None
        output = dict()
        z = self.post_quant_conv(z)

        # z to block_in
        h = self.conv_in(z)

        # middle
        h = self.mid.block_1(h, temb)
        h = self.mid.attn_1(h)
        h = self.mid.block_2(h, temb)

        # upsampling
        for i_level in reversed(range(self.num_resolutions)):
            for i_block in range(self.num_res_blocks[i_level]):
                h = self.up[i_level].block[i_block](h, temb)
                if len(self.up[i_level].attn) > 0:
                    h = self.up[i_level].attn[i_block](h)
            if i_level != 0:
                h = self.up[i_level].upsample(h)

        # end
        output["output"] = h
        if self.give_pre_end:
            return output

        h = self.norm_out(h)
        h = nonlinearity(h)
        h = self.conv_out(h)
        output["output"] = h
        return output


class MAGVITv2(ModelMixin, ConfigMixin):
    @register_to_config
    def __init__(
            self,
    ):
        super().__init__()

        self.encoder = VQGANEncoder()
        self.decoder = VQGANDecoder()
        self.quantize = LFQuantizer()

    def forward(self, pixel_values, return_loss=False):
        pass

    def encode(self, pixel_values, return_loss=False):
        hidden_states = self.encoder(pixel_values)
        quantized_states = self.quantize(hidden_states)['z']
        codebook_indices = self.quantize.get_indices(quantized_states).reshape(pixel_values.shape[0], -1)
        output = (quantized_states, codebook_indices)
        return output

    def get_code(self, pixel_values):
        hidden_states = self.encoder(pixel_values)
        codebook_indices = self.quantize.get_indices(self.quantize(hidden_states)['z']).reshape(pixel_values.shape[0], -1)

        return codebook_indices

    def decode_code(self, codebook_indices, shape=None):
        z_q = self.quantize.get_codebook_entry(codebook_indices, shape=shape)

        reconstructed_pixel_values = self.decoder(z_q)["output"]
        return reconstructed_pixel_values


if __name__ == '__main__':
    encoder = VQGANEncoder()
    import ipdb
    ipdb.set_trace()
    print()