File size: 12,168 Bytes
8741abe
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
"""
Modified from https://github.com/CompVis/taming-transformers/blob/master/taming/modules/diffusionmodules/model.py#L34
"""

import math
from typing import Tuple, Union

import numpy as np
import torch
import torch.nn as nn
import torch.nn.functional as F
from einops import rearrange, repeat
from einops.layers.torch import Rearrange


def nonlinearity(x):
    # swish
    return x * torch.sigmoid(x)


def Normalize(in_channels):
    return torch.nn.GroupNorm(
        num_groups=32, num_channels=in_channels, eps=1e-6, affine=True
    )


class Upsample(nn.Module):
    def __init__(self, in_channels, with_conv):
        super().__init__()
        self.with_conv = with_conv
        if self.with_conv:
            self.conv = torch.nn.Conv2d(
                in_channels, in_channels, kernel_size=3, stride=1, padding=1
            )

    def forward(self, x):
        x = torch.nn.functional.interpolate(x, scale_factor=2.0, mode="nearest")
        if self.with_conv:
            x = self.conv(x)
        return x


class DepthToSpaceUpsample(nn.Module):
    def __init__(
        self,
        in_channels,
    ):
        super().__init__()
        conv = nn.Conv2d(in_channels, in_channels * 4, 1)

        self.net = nn.Sequential(
            conv,
            nn.SiLU(),
            Rearrange("b (c p1 p2) h w -> b c (h p1) (w p2)", p1=2, p2=2),
        )

        self.init_conv_(conv)

    def init_conv_(self, conv):
        o, i, h, w = conv.weight.shape
        conv_weight = torch.empty(o // 4, i, h, w)
        nn.init.kaiming_uniform_(conv_weight)
        conv_weight = repeat(conv_weight, "o ... -> (o 4) ...")

        conv.weight.data.copy_(conv_weight)
        nn.init.zeros_(conv.bias.data)

    def forward(self, x):
        out = self.net(x)
        return out


class Downsample(nn.Module):
    def __init__(self, in_channels, with_conv):
        super().__init__()
        self.with_conv = with_conv
        if self.with_conv:
            # no asymmetric padding in torch conv, must do it ourselves
            self.conv = torch.nn.Conv2d(
                in_channels, in_channels, kernel_size=3, stride=2, padding=0
            )

    def forward(self, x):
        if self.with_conv:
            pad = (0, 1, 0, 1)
            x = torch.nn.functional.pad(x, pad, mode="constant", value=0)
            x = self.conv(x)
        else:
            x = torch.nn.functional.avg_pool2d(x, kernel_size=2, stride=2)
        return x


def unpack_time(t, batch):
    _, c, w, h = t.size()
    out = torch.reshape(t, [batch, -1, c, w, h])
    out = rearrange(out, "b t c h w -> b c t h w")
    return out


def pack_time(t):
    out = rearrange(t, "b c t h w -> b t c h w")
    _, _, c, w, h = out.size()
    return torch.reshape(out, [-1, c, w, h])


class TimeDownsample2x(nn.Module):
    def __init__(
        self,
        dim,
        dim_out=None,
        kernel_size=3,
    ):
        super().__init__()
        if dim_out is None:
            dim_out = dim
        self.time_causal_padding = (kernel_size - 1, 0)
        self.conv = nn.Conv1d(dim, dim_out, kernel_size, stride=2)

    def forward(self, x):
        x = rearrange(x, "b c t h w -> b h w c t")
        b, h, w, c, t = x.size()
        x = torch.reshape(x, [-1, c, t])

        x = F.pad(x, self.time_causal_padding)
        out = self.conv(x)

        out = torch.reshape(out, [b, h, w, c, t])
        out = rearrange(out, "b h w c t -> b c t h w")
        out = rearrange(out, "b h w c t -> b c t h w")
        return out


class TimeUpsample2x(nn.Module):
    def __init__(self, dim, dim_out=None):
        super().__init__()
        if dim_out is None:
            dim_out = dim
        conv = nn.Conv1d(dim, dim_out * 2, 1)

        self.net = nn.Sequential(
            nn.SiLU(), conv, Rearrange("b (c p) t -> b c (t p)", p=2)
        )

        self.init_conv_(conv)

    def init_conv_(self, conv):
        o, i, t = conv.weight.shape
        conv_weight = torch.empty(o // 2, i, t)
        nn.init.kaiming_uniform_(conv_weight)
        conv_weight = repeat(conv_weight, "o ... -> (o 2) ...")

        conv.weight.data.copy_(conv_weight)
        nn.init.zeros_(conv.bias.data)

    def forward(self, x):
        x = rearrange(x, "b c t h w -> b h w c t")
        b, h, w, c, t = x.size()
        x = torch.reshape(x, [-1, c, t])

        out = self.net(x)
        out = out[:, :, 1:].contiguous()

        out = torch.reshape(out, [b, h, w, c, t])
        out = rearrange(out, "b h w c t -> b c t h w")
        return out


class AttnBlock(nn.Module):
    def __init__(self, in_channels):
        super().__init__()
        self.in_channels = in_channels

        self.norm = Normalize(in_channels)
        self.q = torch.nn.Conv2d(
            in_channels, in_channels, kernel_size=1, stride=1, padding=0
        )
        self.k = torch.nn.Conv2d(
            in_channels, in_channels, kernel_size=1, stride=1, padding=0
        )
        self.v = torch.nn.Conv2d(
            in_channels, in_channels, kernel_size=1, stride=1, padding=0
        )
        self.proj_out = torch.nn.Conv2d(
            in_channels, in_channels, kernel_size=1, stride=1, padding=0
        )

    def forward(self, x):
        h_ = x
        h_ = self.norm(h_)
        q = self.q(h_)
        k = self.k(h_)
        v = self.v(h_)

        # compute attention
        b, c, h, w = q.shape
        q = q.reshape(b, c, h * w)
        q = q.permute(0, 2, 1)  # b,hw,c
        k = k.reshape(b, c, h * w)  # b,c,hw
        w_ = torch.bmm(q, k)  # b,hw,hw    w[b,i,j]=sum_c q[b,i,c]k[b,c,j]
        w_ = w_ * (int(c) ** (-0.5))
        w_ = torch.nn.functional.softmax(w_, dim=2)

        # attend to values
        v = v.reshape(b, c, h * w)
        w_ = w_.permute(0, 2, 1)  # b,hw,hw (first hw of k, second of q)
        h_ = torch.bmm(v, w_)  # b, c,hw (hw of q) h_[b,c,j] = sum_i v[b,c,i] w_[b,i,j]
        h_ = h_.reshape(b, c, h, w)

        h_ = self.proj_out(h_)

        return x + h_


class TimeAttention(AttnBlock):
    def forward(self, x, *args, **kwargs):
        x = rearrange(x, "b c t h w -> b h w t c")
        b, h, w, t, c = x.size()
        x = torch.reshape(x, (-1, t, c))

        x = super().forward(x, *args, **kwargs)

        x = torch.reshape(x, [b, h, w, t, c])
        return rearrange(x, "b h w t c -> b c t h w")


class Residual(nn.Module):
    def __init__(self, fn: nn.Module):
        super().__init__()
        self.fn = fn

    def forward(self, x, **kwargs):
        return self.fn(x, **kwargs) + x


def cast_tuple(t, length=1):
    return t if isinstance(t, tuple) else ((t,) * length)


class CausalConv3d(nn.Module):
    def __init__(
        self,
        chan_in,
        chan_out,
        kernel_size: Union[int, Tuple[int, int, int]],
        pad_mode="constant",
        **kwargs
    ):
        super().__init__()
        kernel_size = cast_tuple(kernel_size, 3)

        time_kernel_size, height_kernel_size, width_kernel_size = kernel_size

        dilation = kwargs.pop("dilation", 1)
        stride = kwargs.pop("stride", 1)

        self.pad_mode = pad_mode
        time_pad = dilation * (time_kernel_size - 1) + (1 - stride)
        height_pad = height_kernel_size // 2
        width_pad = width_kernel_size // 2

        self.time_pad = time_pad
        self.time_causal_padding = (
            width_pad,
            width_pad,
            height_pad,
            height_pad,
            time_pad,
            0,
        )

        stride = (stride, 1, 1)
        dilation = (dilation, 1, 1)
        self.conv = nn.Conv3d(
            chan_in, chan_out, kernel_size, stride=stride, dilation=dilation, **kwargs
        )

    def forward(self, x):
        pad_mode = self.pad_mode if self.time_pad < x.shape[2] else "constant"

        x = F.pad(x, self.time_causal_padding, mode=pad_mode)
        return self.conv(x)


def ResnetBlockCausal3D(
    dim, kernel_size: Union[int, Tuple[int, int, int]], pad_mode: str = "constant"
):
    net = nn.Sequential(
        Normalize(dim),
        nn.SiLU(),
        CausalConv3d(dim, dim, kernel_size, pad_mode),
        Normalize(dim),
        nn.SiLU(),
        CausalConv3d(dim, dim, kernel_size, pad_mode),
    )
    return Residual(net)


class ResnetBlock(nn.Module):
    def __init__(
        self,
        *,
        in_channels,
        out_channels=None,
        conv_shortcut=False,
        dropout,
        temb_channels=512
    ):
        super().__init__()
        self.in_channels = in_channels
        out_channels = in_channels if out_channels is None else out_channels
        self.out_channels = out_channels
        self.use_conv_shortcut = conv_shortcut

        self.norm1 = Normalize(in_channels)
        self.conv1 = torch.nn.Conv2d(
            in_channels, out_channels, kernel_size=3, stride=1, padding=1
        )
        if temb_channels > 0:
            self.temb_proj = torch.nn.Linear(temb_channels, out_channels)
        else:
            self.temb_proj = None
        self.norm2 = Normalize(out_channels)
        self.dropout = torch.nn.Dropout(dropout)
        self.conv2 = torch.nn.Conv2d(
            out_channels, out_channels, kernel_size=3, stride=1, padding=1
        )
        if self.in_channels != self.out_channels:
            if self.use_conv_shortcut:
                self.conv_shortcut = torch.nn.Conv2d(
                    in_channels, out_channels, kernel_size=3, stride=1, padding=1
                )
            else:
                self.nin_shortcut = torch.nn.Conv2d(
                    in_channels, out_channels, kernel_size=1, stride=1, padding=0
                )

    def forward(self, x, temb):
        h = x
        h = self.norm1(h)
        h = nonlinearity(h)
        h = self.conv1(h)

        if temb is not None:
            h = h + self.temb_proj(nonlinearity(temb))[:, :, None, None]

        h = self.norm2(h)
        h = nonlinearity(h)
        h = self.dropout(h)
        h = self.conv2(h)

        if self.in_channels != self.out_channels:
            if self.use_conv_shortcut:
                x = self.conv_shortcut(x)
            else:
                x = self.nin_shortcut(x)

        return x + h


class DinoV2Model(nn.Module):
    def __init__(
        self,
        model_name,
        local_checkpoint_path="",
        renorm_input=False,
        old_input_mean=0.5,
        old_input_std=0.5,
        freeze_model=False,
    ):
        super().__init__()
        if local_checkpoint_path != "":
            self._model = torch.hub.load(
                local_checkpoint_path, model_name, source="local"
            )
        else:
            self._model = torch.hub.load("facebookresearch/dinov2", model_name)
        self.register_buffer(
            "_dino_input_mean",
            torch.tensor([0.485, 0.456, 0.406]).float()[None, :, None, None],
        )
        self.register_buffer(
            "_dino_input_std",
            torch.tensor([0.229, 0.224, 0.225]).float()[None, :, None, None],
        )
        self._old_input_mean = old_input_mean
        self._old_input_std = old_input_std
        self._renorm_input = renorm_input
        if freeze_model:
            for param in self._model.parameters():
                param.requires_grad = False

    def forward(self, inputs):
        batch, _, height, width = inputs.size()
        if self._renorm_input:
            inputs = inputs * self._old_input_mean + self._old_input_std
            inputs = (inputs - self._dino_input_mean) / self._dino_input_std
        # TODO(yanwan): If we want to remove this resizing, have to modify the decoder to support upscaling by a factor of 14.
        # Reduce both height and width to 7/8 of their original values while maintaining aspect ratio to fit dinov2 requirement.
        new_height = height // 8 * 7
        new_width = width // 8 * 7
        inputs = F.interpolate(inputs, (new_height, new_width), mode="bilinear")
        features = self._model.forward_features(inputs)["x_norm_patchtokens"]
        features = torch.transpose(features, 1, 2).contiguous()
        features = torch.reshape(
            features, (batch, -1, new_height // 14, new_width // 14)
        )
        return features