File size: 8,627 Bytes
8741abe |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 |
import os
os.environ["TOKENIZERS_PARALLELISM"] = "true"
from PIL import Image
from tqdm import tqdm
import numpy as np
import torch
import wandb
from models import Showo, MAGVITv2
from prompting_utils import UniversalPrompting, create_attention_mask_for_mmu, create_attention_mask_for_mmu_vit
from training.utils import get_config, flatten_omega_conf, image_transform
from transformers import AutoTokenizer
from models.clip_encoder import CLIPVisionTower
from transformers import CLIPImageProcessor
# import.training.conversation as conversation_lib
from training import conversation as conversation_lib
conversation_lib.default_conversation = conversation_lib.conv_templates["phi1.5"]
SYSTEM_PROMPT = "A chat between a curious user and an artificial intelligence assistant. " \
"The assistant gives helpful, detailed, and polite answers to the user's questions."
SYSTEM_PROMPT_LEN = 28
def get_vq_model_class(model_type):
if model_type == "magvitv2":
return MAGVITv2
else:
raise ValueError(f"model_type {model_type} not supported.")
if __name__ == '__main__':
config = get_config()
resume_wandb_run = config.wandb.resume
run_id = config.wandb.get("run_id", None)
if run_id is None:
resume_wandb_run = False
run_id = wandb.util.generate_id()
config.wandb.run_id = run_id
wandb_config = {k: v for k, v in flatten_omega_conf(config, resolve=True)}
wandb.init(
project="demo",
name=config.experiment.name + '_mmu',
config=wandb_config,
)
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
tokenizer = AutoTokenizer.from_pretrained(config.model.showo.llm_model_path, padding_side="left")
uni_prompting = UniversalPrompting(tokenizer, max_text_len=config.dataset.preprocessing.max_seq_length,
special_tokens=("<|soi|>", "<|eoi|>", "<|sov|>", "<|eov|>", "<|t2i|>", "<|mmu|>", "<|t2v|>", "<|v2v|>", "<|lvg|>"),
ignore_id=-100, cond_dropout_prob=config.training.cond_dropout_prob)
vq_model = get_vq_model_class(config.model.vq_model.type)
vq_model = vq_model.from_pretrained(config.model.vq_model.vq_model_name).to(device)
vq_model.requires_grad_(False)
vq_model.eval()
vision_tower_name = "openai/clip-vit-large-patch14-336"
vision_tower = CLIPVisionTower(vision_tower_name).to(device)
clip_image_processor = CLIPImageProcessor.from_pretrained(vision_tower_name)
model = Showo.from_pretrained(config.model.showo.pretrained_model_path).to(device)
model.eval()
temperature = 0.8 # 1.0 = no change, < 1.0 = less random, > 1.0 = more random, in predictions
top_k = 1 # retain only the top_k most likely tokens, clamp others to have 0 probability
file_list = os.listdir(config.mmu_image_root)
responses = ['' for i in range(len(file_list))]
images = []
config.question = config.question.split(' *** ')
for i, file_name in enumerate(tqdm(file_list)):
image_path = os.path.join(config.mmu_image_root, file_name)
image_ori = Image.open(image_path).convert("RGB")
image = image_transform(image_ori, resolution=config.dataset.params.resolution).to(device)
image = image.unsqueeze(0)
images.append(image)
pixel_values = clip_image_processor.preprocess(image_ori, return_tensors="pt")["pixel_values"][0]
image_tokens = vq_model.get_code(image) + len(uni_prompting.text_tokenizer)
batch_size = 1
for question in config.question:
if config.model.showo.w_clip_vit:
conv = conversation_lib.default_conversation.copy()
conv.append_message(conv.roles[0], question)
conv.append_message(conv.roles[1], None)
prompt_question = conv.get_prompt()
question_input = []
question_input.append(prompt_question.strip())
input_ids_system = [uni_prompting.text_tokenizer(SYSTEM_PROMPT, return_tensors="pt", padding="longest").input_ids
for _ in range(batch_size)]
input_ids_system = torch.stack(input_ids_system, dim=0)
assert input_ids_system.shape[-1] == 28
input_ids_system = input_ids_system.to(device)
input_ids_system = input_ids_system[0]
input_ids = [uni_prompting.text_tokenizer(prompt, return_tensors="pt", padding="longest").input_ids
for prompt in question_input]
input_ids = torch.stack(input_ids)
input_ids = torch.nn.utils.rnn.pad_sequence(
input_ids, batch_first=True, padding_value=uni_prompting.text_tokenizer.pad_token_id
)
input_ids = torch.tensor(input_ids).to(device).squeeze(0)
# import pdb; pdb.set_trace()
input_ids_llava = torch.cat([
(torch.ones(input_ids.shape[0], 1) *uni_prompting.sptids_dict['<|mmu|>']).to(device),
input_ids_system,
(torch.ones(input_ids.shape[0], 1) * uni_prompting.sptids_dict['<|soi|>']).to(device),
# place your img embedding here
(torch.ones(input_ids.shape[0], 1) * uni_prompting.sptids_dict['<|eoi|>']).to(device),
input_ids,
], dim=1).long()
images_embeddings = vision_tower(pixel_values[None])
images_embeddings = model.mm_projector(images_embeddings)
text_embeddings = model.showo.model.embed_tokens(input_ids_llava)
# Full input seq
part1 = text_embeddings[:, :2 + SYSTEM_PROMPT_LEN, :]
part2 = text_embeddings[:, 2 + SYSTEM_PROMPT_LEN:, :]
input_embeddings = torch.cat((part1, images_embeddings, part2), dim=1)
attention_mask_llava = create_attention_mask_for_mmu_vit(input_embeddings,
system_prompt_len=SYSTEM_PROMPT_LEN)
cont_toks_list = model.mmu_generate(input_embeddings=input_embeddings,
attention_mask=attention_mask_llava[0].unsqueeze(0),
max_new_tokens=100,
top_k=top_k,
eot_token=uni_prompting.sptids_dict['<|eot|>']
)
else:
input_ids = uni_prompting.text_tokenizer(['USER: \n' + question + ' ASSISTANT:'])[
'input_ids']
input_ids = torch.tensor(input_ids).to(device)
input_ids = torch.cat([
(torch.ones(input_ids.shape[0], 1) * uni_prompting.sptids_dict['<|mmu|>']).to(device),
(torch.ones(input_ids.shape[0], 1) * uni_prompting.sptids_dict['<|soi|>']).to(device),
image_tokens,
(torch.ones(input_ids.shape[0], 1) * uni_prompting.sptids_dict['<|eoi|>']).to(device),
(torch.ones(input_ids.shape[0], 1) * uni_prompting.sptids_dict['<|sot|>']).to(device),
input_ids
], dim=1).long()
attention_mask = create_attention_mask_for_mmu(input_ids.to(device),
eoi_id=int(uni_prompting.sptids_dict['<|eoi|>']))
cont_toks_list = model.mmu_generate(input_ids, attention_mask=attention_mask,
max_new_tokens=100, top_k=top_k,
eot_token=uni_prompting.sptids_dict['<|eot|>'])
cont_toks_list = torch.stack(cont_toks_list).squeeze()[None]
text = uni_prompting.text_tokenizer.batch_decode(cont_toks_list, skip_special_tokens=True)
print(text)
responses[i] += f'User: ' + question + f'\n Answer : ' + text[0] + '\n'
images = torch.cat(images, dim=0)
images = torch.clamp((images + 1.0) / 2.0, min=0.0, max=1.0)
images *= 255.0
images = images.permute(0, 2, 3, 1).cpu().numpy().astype(np.uint8)
pil_images = [Image.fromarray(image) for image in images]
wandb_images = [wandb.Image(image, caption=responses[i]) for i, image in enumerate(pil_images)]
wandb.log({"multimodal understanding": wandb_images}, step=0)
|