File size: 7,118 Bytes
8741abe
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
import math
import random
import torch
import torch.nn.functional as F
from omegaconf import DictConfig, ListConfig, OmegaConf
from typing import Any, List, Tuple, Union


##################################################
#              config utils
##################################################
def get_config():
    cli_conf = OmegaConf.from_cli()
    yaml_conf = OmegaConf.load(cli_conf.config)
    conf = OmegaConf.merge(yaml_conf, cli_conf)

    return conf


def flatten_omega_conf(cfg: Any, resolve: bool = False) -> List[Tuple[str, Any]]:
    ret = []

    def handle_dict(key: Any, value: Any, resolve: bool) -> List[Tuple[str, Any]]:
        return [(f"{key}.{k1}", v1) for k1, v1 in flatten_omega_conf(value, resolve=resolve)]

    def handle_list(key: Any, value: Any, resolve: bool) -> List[Tuple[str, Any]]:
        return [(f"{key}.{idx}", v1) for idx, v1 in flatten_omega_conf(value, resolve=resolve)]

    if isinstance(cfg, DictConfig):
        for k, v in cfg.items_ex(resolve=resolve):
            if isinstance(v, DictConfig):
                ret.extend(handle_dict(k, v, resolve=resolve))
            elif isinstance(v, ListConfig):
                ret.extend(handle_list(k, v, resolve=resolve))
            else:
                ret.append((str(k), v))
    elif isinstance(cfg, ListConfig):
        for idx, v in enumerate(cfg._iter_ex(resolve=resolve)):
            if isinstance(v, DictConfig):
                ret.extend(handle_dict(idx, v, resolve=resolve))
            elif isinstance(v, ListConfig):
                ret.extend(handle_list(idx, v, resolve=resolve))
            else:
                ret.append((str(idx), v))
    else:
        assert False

    return ret


##################################################
#              training utils
##################################################
def soft_target_cross_entropy(logits, targets, soft_targets):
    # ignore the first token from logits and targets (class id token)
    logits = logits[:, 1:]
    targets = targets[:, 1:]

    logits = logits[..., : soft_targets.shape[-1]]

    log_probs = F.log_softmax(logits, dim=-1)
    padding_mask = targets.eq(-100)

    loss = torch.sum(-soft_targets * log_probs, dim=-1)
    loss.masked_fill_(padding_mask, 0.0)

    # Take the mean over the label dimensions, then divide by the number of active elements (i.e. not-padded):
    num_active_elements = padding_mask.numel() - padding_mask.long().sum()
    loss = loss.sum() / num_active_elements
    return loss


def get_loss_weight(t, mask, min_val=0.3):
    return 1 - (1 - mask) * ((1 - t) * (1 - min_val))[:, None]


def mask_or_random_replace_tokens(image_tokens, mask_id, config, mask_schedule, is_train=True):
    batch_size, seq_len = image_tokens.shape

    if not is_train and config.training.get("eval_mask_ratios", None):
        mask_prob = random.choices(config.training.eval_mask_ratios, k=batch_size)
        mask_prob = torch.tensor(mask_prob, device=image_tokens.device)
    else:
        # Sample a random timestep for each image
        timesteps = torch.rand(batch_size, device=image_tokens.device)
        # Sample a random mask probability for each image using timestep and cosine schedule
        mask_prob = mask_schedule(timesteps)
        mask_prob = mask_prob.clip(config.training.min_masking_rate)

    # creat a random mask for each image
    num_token_masked = (seq_len * mask_prob).round().clamp(min=1)

    mask_contiguous_region_prob = config.training.get("mask_contiguous_region_prob", None)

    if mask_contiguous_region_prob is None:
        mask_contiguous_region = False
    else:
        mask_contiguous_region = random.random() < mask_contiguous_region_prob

    if not mask_contiguous_region:
        batch_randperm = torch.rand(batch_size, seq_len, device=image_tokens.device).argsort(dim=-1)
        mask = batch_randperm < num_token_masked.unsqueeze(-1)
    else:
        resolution = int(seq_len ** 0.5)
        mask = torch.zeros((batch_size, resolution, resolution), device=image_tokens.device)

        # TODO - would be nice to vectorize
        for batch_idx, num_token_masked_ in enumerate(num_token_masked):
            num_token_masked_ = int(num_token_masked_.item())

            # NOTE: a bit handwavy with the bounds but gets a rectangle of ~num_token_masked_
            num_token_masked_height = random.randint(
                math.ceil(num_token_masked_ / resolution), min(resolution, num_token_masked_)
            )
            num_token_masked_height = min(num_token_masked_height, resolution)

            num_token_masked_width = math.ceil(num_token_masked_ / num_token_masked_height)
            num_token_masked_width = min(num_token_masked_width, resolution)

            start_idx_height = random.randint(0, resolution - num_token_masked_height)
            start_idx_width = random.randint(0, resolution - num_token_masked_width)

            mask[
            batch_idx,
            start_idx_height: start_idx_height + num_token_masked_height,
            start_idx_width: start_idx_width + num_token_masked_width,
            ] = 1

        mask = mask.reshape(batch_size, seq_len)
        mask = mask.to(torch.bool)

    # mask images and create input and labels
    if config.training.get("noise_type", "mask"):
        input_ids = torch.where(mask, mask_id, image_tokens)
    elif config.training.get("noise_type", "random_replace"):
        # sample random tokens from the vocabulary
        random_tokens = torch.randint_like(
            image_tokens, low=0, high=config.model.codebook_size, device=image_tokens.device
        )
        input_ids = torch.where(mask, random_tokens, image_tokens)
    else:
        raise ValueError(f"noise_type {config.training.noise_type} not supported")

    if (
            config.training.get("predict_all_tokens", False)
            or config.training.get("noise_type", "mask") == "random_replace"
    ):
        labels = image_tokens
        loss_weight = get_loss_weight(mask_prob, mask.long())
    else:
        labels = torch.where(mask, image_tokens, -100)
        loss_weight = None

    return input_ids, labels, loss_weight, mask_prob


##################################################
#              misc
##################################################
class AverageMeter(object):
    """Computes and stores the average and current value"""

    def __init__(self):
        self.reset()

    def reset(self):
        self.val = 0
        self.avg = 0
        self.sum = 0
        self.count = 0

    def update(self, val, n=1):
        self.val = val
        self.sum += val * n
        self.count += n
        self.avg = self.sum / self.count

from torchvision import transforms
def image_transform(image, resolution=256, normalize=True):
    image = transforms.Resize(resolution, interpolation=transforms.InterpolationMode.BILINEAR)(image)
    image = transforms.CenterCrop((resolution, resolution))(image)
    image = transforms.ToTensor()(image)
    if normalize:
        image = transforms.Normalize(mean=[0.5, 0.5, 0.5], std=[0.5, 0.5, 0.5], inplace=True)(image)
    return image