Spaces:
Sleeping
Sleeping
File size: 22,499 Bytes
635f007 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 |
from math import atan, cos, pi, sin, sqrt
from typing import Any, Callable, List, Optional, Tuple, Type
import torch
import torch.nn as nn
import torch.nn.functional as F
from einops import rearrange, reduce
from torch import Tensor
from .utils import *
"""
Diffusion Training
"""
""" Distributions """
class Distribution:
def __call__(self, num_samples: int, device: torch.device):
raise NotImplementedError()
class LogNormalDistribution(Distribution):
def __init__(self, mean: float, std: float):
self.mean = mean
self.std = std
def __call__(
self, num_samples: int, device: torch.device = torch.device("cpu")
) -> Tensor:
normal = self.mean + self.std * torch.randn((num_samples,), device=device)
return normal.exp()
class UniformDistribution(Distribution):
def __call__(self, num_samples: int, device: torch.device = torch.device("cpu")):
return torch.rand(num_samples, device=device)
class VKDistribution(Distribution):
def __init__(
self,
min_value: float = 0.0,
max_value: float = float("inf"),
sigma_data: float = 1.0,
):
self.min_value = min_value
self.max_value = max_value
self.sigma_data = sigma_data
def __call__(
self, num_samples: int, device: torch.device = torch.device("cpu")
) -> Tensor:
sigma_data = self.sigma_data
min_cdf = atan(self.min_value / sigma_data) * 2 / pi
max_cdf = atan(self.max_value / sigma_data) * 2 / pi
u = (max_cdf - min_cdf) * torch.randn((num_samples,), device=device) + min_cdf
return torch.tan(u * pi / 2) * sigma_data
""" Diffusion Classes """
def pad_dims(x: Tensor, ndim: int) -> Tensor:
# Pads additional ndims to the right of the tensor
return x.view(*x.shape, *((1,) * ndim))
def clip(x: Tensor, dynamic_threshold: float = 0.0):
if dynamic_threshold == 0.0:
return x.clamp(-1.0, 1.0)
else:
# Dynamic thresholding
# Find dynamic threshold quantile for each batch
x_flat = rearrange(x, "b ... -> b (...)")
scale = torch.quantile(x_flat.abs(), dynamic_threshold, dim=-1)
# Clamp to a min of 1.0
scale.clamp_(min=1.0)
# Clamp all values and scale
scale = pad_dims(scale, ndim=x.ndim - scale.ndim)
x = x.clamp(-scale, scale) / scale
return x
def to_batch(
batch_size: int,
device: torch.device,
x: Optional[float] = None,
xs: Optional[Tensor] = None,
) -> Tensor:
assert exists(x) ^ exists(xs), "Either x or xs must be provided"
# If x provided use the same for all batch items
if exists(x):
xs = torch.full(size=(batch_size,), fill_value=x).to(device)
assert exists(xs)
return xs
class Diffusion(nn.Module):
alias: str = ""
"""Base diffusion class"""
def denoise_fn(
self,
x_noisy: Tensor,
sigmas: Optional[Tensor] = None,
sigma: Optional[float] = None,
**kwargs,
) -> Tensor:
raise NotImplementedError("Diffusion class missing denoise_fn")
def forward(self, x: Tensor, noise: Tensor = None, **kwargs) -> Tensor:
raise NotImplementedError("Diffusion class missing forward function")
class VDiffusion(Diffusion):
alias = "v"
def __init__(self, net: nn.Module, *, sigma_distribution: Distribution):
super().__init__()
self.net = net
self.sigma_distribution = sigma_distribution
def get_alpha_beta(self, sigmas: Tensor) -> Tuple[Tensor, Tensor]:
angle = sigmas * pi / 2
alpha = torch.cos(angle)
beta = torch.sin(angle)
return alpha, beta
def denoise_fn(
self,
x_noisy: Tensor,
sigmas: Optional[Tensor] = None,
sigma: Optional[float] = None,
**kwargs,
) -> Tensor:
batch_size, device = x_noisy.shape[0], x_noisy.device
sigmas = to_batch(x=sigma, xs=sigmas, batch_size=batch_size, device=device)
return self.net(x_noisy, sigmas, **kwargs)
def forward(self, x: Tensor, noise: Tensor = None, **kwargs) -> Tensor:
batch_size, device = x.shape[0], x.device
# Sample amount of noise to add for each batch element
sigmas = self.sigma_distribution(num_samples=batch_size, device=device)
sigmas_padded = rearrange(sigmas, "b -> b 1 1")
# Get noise
noise = default(noise, lambda: torch.randn_like(x))
# Combine input and noise weighted by half-circle
alpha, beta = self.get_alpha_beta(sigmas_padded)
x_noisy = x * alpha + noise * beta
x_target = noise * alpha - x * beta
# Denoise and return loss
x_denoised = self.denoise_fn(x_noisy, sigmas, **kwargs)
return F.mse_loss(x_denoised, x_target)
class KDiffusion(Diffusion):
"""Elucidated Diffusion (Karras et al. 2022): https://arxiv.org/abs/2206.00364"""
alias = "k"
def __init__(
self,
net: nn.Module,
*,
sigma_distribution: Distribution,
sigma_data: float, # data distribution standard deviation
dynamic_threshold: float = 0.0,
):
super().__init__()
self.net = net
self.sigma_data = sigma_data
self.sigma_distribution = sigma_distribution
self.dynamic_threshold = dynamic_threshold
def get_scale_weights(self, sigmas: Tensor) -> Tuple[Tensor, ...]:
sigma_data = self.sigma_data
c_noise = torch.log(sigmas) * 0.25
sigmas = rearrange(sigmas, "b -> b 1 1")
c_skip = (sigma_data**2) / (sigmas**2 + sigma_data**2)
c_out = sigmas * sigma_data * (sigma_data**2 + sigmas**2) ** -0.5
c_in = (sigmas**2 + sigma_data**2) ** -0.5
return c_skip, c_out, c_in, c_noise
def denoise_fn(
self,
x_noisy: Tensor,
sigmas: Optional[Tensor] = None,
sigma: Optional[float] = None,
**kwargs,
) -> Tensor:
batch_size, device = x_noisy.shape[0], x_noisy.device
sigmas = to_batch(x=sigma, xs=sigmas, batch_size=batch_size, device=device)
# Predict network output and add skip connection
c_skip, c_out, c_in, c_noise = self.get_scale_weights(sigmas)
x_pred = self.net(c_in * x_noisy, c_noise, **kwargs)
x_denoised = c_skip * x_noisy + c_out * x_pred
return x_denoised
def loss_weight(self, sigmas: Tensor) -> Tensor:
# Computes weight depending on data distribution
return (sigmas**2 + self.sigma_data**2) * (sigmas * self.sigma_data) ** -2
def forward(self, x: Tensor, noise: Tensor = None, **kwargs) -> Tensor:
batch_size, device = x.shape[0], x.device
from einops import rearrange, reduce
# Sample amount of noise to add for each batch element
sigmas = self.sigma_distribution(num_samples=batch_size, device=device)
sigmas_padded = rearrange(sigmas, "b -> b 1 1")
# Add noise to input
noise = default(noise, lambda: torch.randn_like(x))
x_noisy = x + sigmas_padded * noise
# Compute denoised values
x_denoised = self.denoise_fn(x_noisy, sigmas=sigmas, **kwargs)
# Compute weighted loss
losses = F.mse_loss(x_denoised, x, reduction="none")
losses = reduce(losses, "b ... -> b", "mean")
losses = losses * self.loss_weight(sigmas)
loss = losses.mean()
return loss
class VKDiffusion(Diffusion):
alias = "vk"
def __init__(self, net: nn.Module, *, sigma_distribution: Distribution):
super().__init__()
self.net = net
self.sigma_distribution = sigma_distribution
def get_scale_weights(self, sigmas: Tensor) -> Tuple[Tensor, ...]:
sigma_data = 1.0
sigmas = rearrange(sigmas, "b -> b 1 1")
c_skip = (sigma_data**2) / (sigmas**2 + sigma_data**2)
c_out = -sigmas * sigma_data * (sigma_data**2 + sigmas**2) ** -0.5
c_in = (sigmas**2 + sigma_data**2) ** -0.5
return c_skip, c_out, c_in
def sigma_to_t(self, sigmas: Tensor) -> Tensor:
return sigmas.atan() / pi * 2
def t_to_sigma(self, t: Tensor) -> Tensor:
return (t * pi / 2).tan()
def denoise_fn(
self,
x_noisy: Tensor,
sigmas: Optional[Tensor] = None,
sigma: Optional[float] = None,
**kwargs,
) -> Tensor:
batch_size, device = x_noisy.shape[0], x_noisy.device
sigmas = to_batch(x=sigma, xs=sigmas, batch_size=batch_size, device=device)
# Predict network output and add skip connection
c_skip, c_out, c_in = self.get_scale_weights(sigmas)
x_pred = self.net(c_in * x_noisy, self.sigma_to_t(sigmas), **kwargs)
x_denoised = c_skip * x_noisy + c_out * x_pred
return x_denoised
def forward(self, x: Tensor, noise: Tensor = None, **kwargs) -> Tensor:
batch_size, device = x.shape[0], x.device
# Sample amount of noise to add for each batch element
sigmas = self.sigma_distribution(num_samples=batch_size, device=device)
sigmas_padded = rearrange(sigmas, "b -> b 1 1")
# Add noise to input
noise = default(noise, lambda: torch.randn_like(x))
x_noisy = x + sigmas_padded * noise
# Compute model output
c_skip, c_out, c_in = self.get_scale_weights(sigmas)
x_pred = self.net(c_in * x_noisy, self.sigma_to_t(sigmas), **kwargs)
# Compute v-objective target
v_target = (x - c_skip * x_noisy) / (c_out + 1e-7)
# Compute loss
loss = F.mse_loss(x_pred, v_target)
return loss
"""
Diffusion Sampling
"""
""" Schedules """
class Schedule(nn.Module):
"""Interface used by different sampling schedules"""
def forward(self, num_steps: int, device: torch.device) -> Tensor:
raise NotImplementedError()
class LinearSchedule(Schedule):
def forward(self, num_steps: int, device: Any) -> Tensor:
sigmas = torch.linspace(1, 0, num_steps + 1)[:-1]
return sigmas
class KarrasSchedule(Schedule):
"""https://arxiv.org/abs/2206.00364 equation 5"""
def __init__(self, sigma_min: float, sigma_max: float, rho: float = 7.0):
super().__init__()
self.sigma_min = sigma_min
self.sigma_max = sigma_max
self.rho = rho
def forward(self, num_steps: int, device: Any) -> Tensor:
rho_inv = 1.0 / self.rho
steps = torch.arange(num_steps, device=device, dtype=torch.float32)
sigmas = (
self.sigma_max**rho_inv
+ (steps / (num_steps - 1))
* (self.sigma_min**rho_inv - self.sigma_max**rho_inv)
) ** self.rho
sigmas = F.pad(sigmas, pad=(0, 1), value=0.0)
return sigmas
""" Samplers """
class Sampler(nn.Module):
diffusion_types: List[Type[Diffusion]] = []
def forward(
self, noise: Tensor, fn: Callable, sigmas: Tensor, num_steps: int
) -> Tensor:
raise NotImplementedError()
def inpaint(
self,
source: Tensor,
mask: Tensor,
fn: Callable,
sigmas: Tensor,
num_steps: int,
num_resamples: int,
) -> Tensor:
raise NotImplementedError("Inpainting not available with current sampler")
class VSampler(Sampler):
diffusion_types = [VDiffusion]
def get_alpha_beta(self, sigma: float) -> Tuple[float, float]:
angle = sigma * pi / 2
alpha = cos(angle)
beta = sin(angle)
return alpha, beta
def forward(
self, noise: Tensor, fn: Callable, sigmas: Tensor, num_steps: int
) -> Tensor:
x = sigmas[0] * noise
alpha, beta = self.get_alpha_beta(sigmas[0].item())
for i in range(num_steps - 1):
is_last = i == num_steps - 1
x_denoised = fn(x, sigma=sigmas[i])
x_pred = x * alpha - x_denoised * beta
x_eps = x * beta + x_denoised * alpha
if not is_last:
alpha, beta = self.get_alpha_beta(sigmas[i + 1].item())
x = x_pred * alpha + x_eps * beta
return x_pred
class KarrasSampler(Sampler):
"""https://arxiv.org/abs/2206.00364 algorithm 1"""
diffusion_types = [KDiffusion, VKDiffusion]
def __init__(
self,
s_tmin: float = 0,
s_tmax: float = float("inf"),
s_churn: float = 0.0,
s_noise: float = 1.0,
):
super().__init__()
self.s_tmin = s_tmin
self.s_tmax = s_tmax
self.s_noise = s_noise
self.s_churn = s_churn
def step(
self, x: Tensor, fn: Callable, sigma: float, sigma_next: float, gamma: float
) -> Tensor:
"""Algorithm 2 (step)"""
# Select temporarily increased noise level
sigma_hat = sigma + gamma * sigma
# Add noise to move from sigma to sigma_hat
epsilon = self.s_noise * torch.randn_like(x)
x_hat = x + sqrt(sigma_hat**2 - sigma**2) * epsilon
# Evaluate ∂x/∂sigma at sigma_hat
d = (x_hat - fn(x_hat, sigma=sigma_hat)) / sigma_hat
# Take euler step from sigma_hat to sigma_next
x_next = x_hat + (sigma_next - sigma_hat) * d
# Second order correction
if sigma_next != 0:
model_out_next = fn(x_next, sigma=sigma_next)
d_prime = (x_next - model_out_next) / sigma_next
x_next = x_hat + 0.5 * (sigma - sigma_hat) * (d + d_prime)
return x_next
def forward(
self, noise: Tensor, fn: Callable, sigmas: Tensor, num_steps: int
) -> Tensor:
x = sigmas[0] * noise
# Compute gammas
gammas = torch.where(
(sigmas >= self.s_tmin) & (sigmas <= self.s_tmax),
min(self.s_churn / num_steps, sqrt(2) - 1),
0.0,
)
# Denoise to sample
for i in range(num_steps - 1):
x = self.step(
x, fn=fn, sigma=sigmas[i], sigma_next=sigmas[i + 1], gamma=gammas[i] # type: ignore # noqa
)
return x
class AEulerSampler(Sampler):
diffusion_types = [KDiffusion, VKDiffusion]
def get_sigmas(self, sigma: float, sigma_next: float) -> Tuple[float, float]:
sigma_up = sqrt(sigma_next**2 * (sigma**2 - sigma_next**2) / sigma**2)
sigma_down = sqrt(sigma_next**2 - sigma_up**2)
return sigma_up, sigma_down
def step(self, x: Tensor, fn: Callable, sigma: float, sigma_next: float) -> Tensor:
# Sigma steps
sigma_up, sigma_down = self.get_sigmas(sigma, sigma_next)
# Derivative at sigma (∂x/∂sigma)
d = (x - fn(x, sigma=sigma)) / sigma
# Euler method
x_next = x + d * (sigma_down - sigma)
# Add randomness
x_next = x_next + torch.randn_like(x) * sigma_up
return x_next
def forward(
self, noise: Tensor, fn: Callable, sigmas: Tensor, num_steps: int
) -> Tensor:
x = sigmas[0] * noise
# Denoise to sample
for i in range(num_steps - 1):
x = self.step(x, fn=fn, sigma=sigmas[i], sigma_next=sigmas[i + 1]) # type: ignore # noqa
return x
class ADPM2Sampler(Sampler):
"""https://www.desmos.com/calculator/jbxjlqd9mb"""
diffusion_types = [KDiffusion, VKDiffusion]
def __init__(self, rho: float = 1.0):
super().__init__()
self.rho = rho
def get_sigmas(self, sigma: float, sigma_next: float) -> Tuple[float, float, float]:
r = self.rho
sigma_up = sqrt(sigma_next**2 * (sigma**2 - sigma_next**2) / sigma**2)
sigma_down = sqrt(sigma_next**2 - sigma_up**2)
sigma_mid = ((sigma ** (1 / r) + sigma_down ** (1 / r)) / 2) ** r
return sigma_up, sigma_down, sigma_mid
def step(self, x: Tensor, fn: Callable, sigma: float, sigma_next: float) -> Tensor:
# Sigma steps
sigma_up, sigma_down, sigma_mid = self.get_sigmas(sigma, sigma_next)
# Derivative at sigma (∂x/∂sigma)
d = (x - fn(x, sigma=sigma)) / sigma
# Denoise to midpoint
x_mid = x + d * (sigma_mid - sigma)
# Derivative at sigma_mid (∂x_mid/∂sigma_mid)
d_mid = (x_mid - fn(x_mid, sigma=sigma_mid)) / sigma_mid
# Denoise to next
x = x + d_mid * (sigma_down - sigma)
# Add randomness
x_next = x + torch.randn_like(x) * sigma_up
return x_next
def forward(
self, noise: Tensor, fn: Callable, sigmas: Tensor, num_steps: int
) -> Tensor:
x = sigmas[0] * noise
# Denoise to sample
for i in range(num_steps - 1):
x = self.step(x, fn=fn, sigma=sigmas[i], sigma_next=sigmas[i + 1]) # type: ignore # noqa
return x
def inpaint(
self,
source: Tensor,
mask: Tensor,
fn: Callable,
sigmas: Tensor,
num_steps: int,
num_resamples: int,
) -> Tensor:
x = sigmas[0] * torch.randn_like(source)
for i in range(num_steps - 1):
# Noise source to current noise level
source_noisy = source + sigmas[i] * torch.randn_like(source)
for r in range(num_resamples):
# Merge noisy source and current then denoise
x = source_noisy * mask + x * ~mask
x = self.step(x, fn=fn, sigma=sigmas[i], sigma_next=sigmas[i + 1]) # type: ignore # noqa
# Renoise if not last resample step
if r < num_resamples - 1:
sigma = sqrt(sigmas[i] ** 2 - sigmas[i + 1] ** 2)
x = x + sigma * torch.randn_like(x)
return source * mask + x * ~mask
""" Main Classes """
class DiffusionSampler(nn.Module):
def __init__(
self,
diffusion: Diffusion,
*,
sampler: Sampler,
sigma_schedule: Schedule,
num_steps: Optional[int] = None,
clamp: bool = True,
):
super().__init__()
self.denoise_fn = diffusion.denoise_fn
self.sampler = sampler
self.sigma_schedule = sigma_schedule
self.num_steps = num_steps
self.clamp = clamp
# Check sampler is compatible with diffusion type
sampler_class = sampler.__class__.__name__
diffusion_class = diffusion.__class__.__name__
message = f"{sampler_class} incompatible with {diffusion_class}"
assert diffusion.alias in [t.alias for t in sampler.diffusion_types], message
def forward(
self, noise: Tensor, num_steps: Optional[int] = None, **kwargs
) -> Tensor:
device = noise.device
num_steps = default(num_steps, self.num_steps) # type: ignore
assert exists(num_steps), "Parameter `num_steps` must be provided"
# Compute sigmas using schedule
sigmas = self.sigma_schedule(num_steps, device)
# Append additional kwargs to denoise function (used e.g. for conditional unet)
fn = lambda *a, **ka: self.denoise_fn(*a, **{**ka, **kwargs}) # noqa
# Sample using sampler
x = self.sampler(noise, fn=fn, sigmas=sigmas, num_steps=num_steps)
x = x.clamp(-1.0, 1.0) if self.clamp else x
return x
class DiffusionInpainter(nn.Module):
def __init__(
self,
diffusion: Diffusion,
*,
num_steps: int,
num_resamples: int,
sampler: Sampler,
sigma_schedule: Schedule,
):
super().__init__()
self.denoise_fn = diffusion.denoise_fn
self.num_steps = num_steps
self.num_resamples = num_resamples
self.inpaint_fn = sampler.inpaint
self.sigma_schedule = sigma_schedule
@torch.no_grad()
def forward(self, inpaint: Tensor, inpaint_mask: Tensor) -> Tensor:
x = self.inpaint_fn(
source=inpaint,
mask=inpaint_mask,
fn=self.denoise_fn,
sigmas=self.sigma_schedule(self.num_steps, inpaint.device),
num_steps=self.num_steps,
num_resamples=self.num_resamples,
)
return x
def sequential_mask(like: Tensor, start: int) -> Tensor:
length, device = like.shape[2], like.device
mask = torch.ones_like(like, dtype=torch.bool)
mask[:, :, start:] = torch.zeros((length - start,), device=device)
return mask
class SpanBySpanComposer(nn.Module):
def __init__(
self,
inpainter: DiffusionInpainter,
*,
num_spans: int,
):
super().__init__()
self.inpainter = inpainter
self.num_spans = num_spans
def forward(self, start: Tensor, keep_start: bool = False) -> Tensor:
half_length = start.shape[2] // 2
spans = list(start.chunk(chunks=2, dim=-1)) if keep_start else []
# Inpaint second half from first half
inpaint = torch.zeros_like(start)
inpaint[:, :, :half_length] = start[:, :, half_length:]
inpaint_mask = sequential_mask(like=start, start=half_length)
for i in range(self.num_spans):
# Inpaint second half
span = self.inpainter(inpaint=inpaint, inpaint_mask=inpaint_mask)
# Replace first half with generated second half
second_half = span[:, :, half_length:]
inpaint[:, :, :half_length] = second_half
# Save generated span
spans.append(second_half)
return torch.cat(spans, dim=2)
class XDiffusion(nn.Module):
def __init__(self, type: str, net: nn.Module, **kwargs):
super().__init__()
diffusion_classes = [VDiffusion, KDiffusion, VKDiffusion]
aliases = [t.alias for t in diffusion_classes] # type: ignore
message = f"type='{type}' must be one of {*aliases,}"
assert type in aliases, message
self.net = net
for XDiffusion in diffusion_classes:
if XDiffusion.alias == type: # type: ignore
self.diffusion = XDiffusion(net=net, **kwargs)
def forward(self, *args, **kwargs) -> Tensor:
return self.diffusion(*args, **kwargs)
def sample(
self,
noise: Tensor,
num_steps: int,
sigma_schedule: Schedule,
sampler: Sampler,
clamp: bool,
**kwargs,
) -> Tensor:
diffusion_sampler = DiffusionSampler(
diffusion=self.diffusion,
sampler=sampler,
sigma_schedule=sigma_schedule,
num_steps=num_steps,
clamp=clamp,
)
return diffusion_sampler(noise, **kwargs)
|