File size: 10,334 Bytes
635f007
 
d430de8
 
a520615
85fcd3c
73dbaa9
a520615
635f007
 
 
e2e4977
 
0675d4f
 
50a9d0f
6eb9ea3
 
 
 
 
 
b21342c
 
 
 
 
 
 
 
 
 
e27b102
 
138b27f
 
85fcd3c
e27b102
 
 
 
 
a5cfbc2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
46e08d9
6440f80
 
 
 
 
 
 
e2e4977
 
138b27f
 
3ecf742
6440f80
 
 
 
46e08d9
6440f80
 
 
 
 
 
 
d430de8
 
138b27f
 
3ecf742
6440f80
 
 
 
d430de8
635f007
04c285e
d430de8
 
 
39e26fe
c6b1398
addff22
d430de8
 
04c285e
4b8ade9
e2e4977
 
 
 
04c285e
cf9af86
e2e4977
 
04c285e
4b8ade9
a5cfbc2
 
 
 
 
 
 
 
 
 
 
4b8ade9
 
 
 
cf9af86
4b8ade9
 
04c285e
6440f80
635f007
 
 
 
 
297e7ce
635f007
 
 
384136e
2480943
 
635f007
a5cfbc2
 
50a9d0f
5967c32
50a9d0f
 
 
 
c609d03
50a9d0f
769b7d2
635f007
304fce9
836bb59
635f007
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
import gradio as gr
import styletts2importable
import ljspeechimportable
import torch
import os
from txtsplit import txtsplit
import numpy as np
import pickle
theme = gr.themes.Base(
    font=[gr.themes.GoogleFont('Libre Franklin'), gr.themes.GoogleFont('Public Sans'), 'system-ui', 'sans-serif'],
)
voicelist = ['f-us-1', 'f-us-2', 'f-us-3', 'f-us-4', 'm-us-1', 'm-us-2', 'm-us-3', 'm-us-4']
voices = {}
import phonemizer
global_phonemizer = phonemizer.backend.EspeakBackend(language='en-us', preserve_punctuation=True,  with_stress=True)
# todo: cache computed style, load using pickle
# if os.path.exists('voices.pkl'):
    # with open('voices.pkl', 'rb') as f:
        # voices = pickle.load(f)
# else:
for v in voicelist:
    voices[v] = styletts2importable.compute_style(f'voices/{v}.wav')
# def synthesize(text, voice, multispeakersteps):
#     if text.strip() == "":
#         raise gr.Error("You must enter some text")
#     # if len(global_phonemizer.phonemize([text])) > 300:
#     if len(text) > 300:
#         raise gr.Error("Text must be under 300 characters")
#     v = voice.lower()
#     # return (24000, styletts2importable.inference(text, voices[v], alpha=0.3, beta=0.7, diffusion_steps=7, embedding_scale=1))
#     return (24000, styletts2importable.inference(text, voices[v], alpha=0.3, beta=0.7, diffusion_steps=multispeakersteps, embedding_scale=1))
def synthesize(text, voice, lngsteps, password, progress=gr.Progress()):
    if text.strip() == "":
        raise gr.Error("You must enter some text")
    if len(text) > 50000:
        raise gr.Error("Text must be <50k characters")
    texts = txtsplit(text)
    v = voice.lower()
    audios = []
    for t in progress.tqdm(texts):
        audios.append(styletts2importable.inference(t, voices[v], alpha=0.3, beta=0.7, diffusion_steps=lngsteps, embedding_scale=1))
    return (24000, np.concatenate(audios))
# def longsynthesize(text, voice, lngsteps, password, progress=gr.Progress()):
#     if password == os.environ['ACCESS_CODE']:
#         if text.strip() == "":
#             raise gr.Error("You must enter some text")
#         if lngsteps > 25:
#             raise gr.Error("Max 25 steps")
#         if lngsteps < 5:
#             raise gr.Error("Min 5 steps")
#         texts = split_and_recombine_text(text)
#         v = voice.lower()
#         audios = []
#         for t in progress.tqdm(texts):
#             audios.append(styletts2importable.inference(t, voices[v], alpha=0.3, beta=0.7, diffusion_steps=lngsteps, embedding_scale=1))
#         return (24000, np.concatenate(audios))
#     else:
#         raise gr.Error('Wrong access code')
def clsynthesize(text, voice, vcsteps, progress=gr.Progress()):
    # if text.strip() == "":
    #     raise gr.Error("You must enter some text")
    # # if global_phonemizer.phonemize([text]) > 300:
    # if len(text) > 400:
    #     raise gr.Error("Text must be under 400 characters")
    # # return (24000, styletts2importable.inference(text, styletts2importable.compute_style(voice), alpha=0.3, beta=0.7, diffusion_steps=20, embedding_scale=1))
    # return (24000, styletts2importable.inference(text, styletts2importable.compute_style(voice), alpha=0.3, beta=0.7, diffusion_steps=vcsteps, embedding_scale=1))
    if text.strip() == "":
        raise gr.Error("You must enter some text")
    if len(text) > 50000:
        raise gr.Error("Text must be <50k characters")
    texts = txtsplit(text)
    audios = []
    for t in progress.tqdm(texts):
        audios.append(styletts2importable.inference(t, styletts2importable.compute_style(voice), alpha=0.3, beta=0.7, diffusion_steps=vcsteps, embedding_scale=1))
    return (24000, np.concatenate(audios))
def ljsynthesize(text, steps, progress=gr.Progress()):
    # if text.strip() == "":
    #     raise gr.Error("You must enter some text")
    # # if global_phonemizer.phonemize([text]) > 300:
    # if len(text) > 400:
    #     raise gr.Error("Text must be under 400 characters")
    noise = torch.randn(1,1,256).to('cuda' if torch.cuda.is_available() else 'cpu')
    # return (24000, ljspeechimportable.inference(text, noise, diffusion_steps=7, embedding_scale=1))
    if text.strip() == "":
        raise gr.Error("You must enter some text")
    if len(text) > 150000:
        raise gr.Error("Text must be <150k characters")
    texts = txtsplit(text)
    audios = []
    for t in progress.tqdm(texts):
        audios.append(ljspeechimportable.inference(t, noise, diffusion_steps=steps, embedding_scale=1))
    return (24000, np.concatenate(audios))


with gr.Blocks() as vctk:
    with gr.Row():
        with gr.Column(scale=1):
            inp = gr.Textbox(label="Text", info="What would you like StyleTTS 2 to read? It works better on full sentences.", interactive=True)
            voice = gr.Dropdown(voicelist, label="Voice", info="Select a default voice.", value='m-us-2', interactive=True)
            multispeakersteps = gr.Slider(minimum=3, maximum=15, value=3, step=1, label="Diffusion Steps", info="Theoretically, higher should be better quality but slower, but we cannot notice a difference. Try with lower steps first - it is faster", interactive=True)
            # use_gruut = gr.Checkbox(label="Use alternate phonemizer (Gruut) - Experimental")
        with gr.Column(scale=1):
            btn = gr.Button("Synthesize", variant="primary")
            audio = gr.Audio(interactive=False, label="Synthesized Audio", waveform_options={'waveform_progress_color': '#3C82F6'})
            btn.click(synthesize, inputs=[inp, voice, multispeakersteps], outputs=[audio], concurrency_limit=4)
with gr.Blocks() as clone:
    with gr.Row():
        with gr.Column(scale=1):
            clinp = gr.Textbox(label="Text", info="What would you like StyleTTS 2 to read? It works better on full sentences.", interactive=True)
            clvoice = gr.Audio(label="Voice", interactive=True, type='filepath', max_length=300, waveform_options={'waveform_progress_color': '#3C82F6'})
            vcsteps = gr.Slider(minimum=3, maximum=20, value=20, step=1, label="Diffusion Steps", info="Theoretically, higher should be better quality but slower, but we cannot notice a difference. Try with lower steps first - it is faster", interactive=True)
        with gr.Column(scale=1):
            clbtn = gr.Button("Synthesize", variant="primary")
            claudio = gr.Audio(interactive=False, label="Synthesized Audio", waveform_options={'waveform_progress_color': '#3C82F6'})
            clbtn.click(clsynthesize, inputs=[clinp, clvoice, vcsteps], outputs=[claudio], concurrency_limit=4)
# with gr.Blocks() as longText:
#     with gr.Row():
#         with gr.Column(scale=1):
#             lnginp = gr.Textbox(label="Text", info="What would you like StyleTTS 2 to read? It works better on full sentences.", interactive=True)
#             lngvoice = gr.Dropdown(voicelist, label="Voice", info="Select a default voice.", value='m-us-1', interactive=True)
#             lngsteps = gr.Slider(minimum=5, maximum=25, value=10, step=1, label="Diffusion Steps", info="Higher = better quality, but slower", interactive=True)
#             lngpwd = gr.Textbox(label="Access code", info="This feature is in beta. You need an access code to use it as it uses more resources and we would like to prevent abuse")
#         with gr.Column(scale=1):
#             lngbtn = gr.Button("Synthesize", variant="primary")
#             lngaudio = gr.Audio(interactive=False, label="Synthesized Audio")
#             lngbtn.click(longsynthesize, inputs=[lnginp, lngvoice, lngsteps, lngpwd], outputs=[lngaudio], concurrency_limit=4)
with gr.Blocks() as lj:
    with gr.Row():
        with gr.Column(scale=1):
            ljinp = gr.Textbox(label="Text", info="What would you like StyleTTS 2 to read? It works better on full sentences.", interactive=True)
            ljsteps = gr.Slider(minimum=3, maximum=20, value=3, step=1, label="Diffusion Steps", info="Theoretically, higher should be better quality but slower, but we cannot notice a difference. Try with lower steps first - it is faster", interactive=True)
        with gr.Column(scale=1):
            ljbtn = gr.Button("Synthesize", variant="primary")
            ljaudio = gr.Audio(interactive=False, label="Synthesized Audio", waveform_options={'waveform_progress_color': '#3C82F6'})
            ljbtn.click(ljsynthesize, inputs=[ljinp, ljsteps], outputs=[ljaudio], concurrency_limit=4)
with gr.Blocks(title="StyleTTS 2", css="footer{display:none !important}", theme=theme) as demo:
    gr.Markdown("""# StyleTTS 2

[Paper](https://arxiv.org/abs/2306.07691) - [Samples](https://styletts2.github.io/) - [Code](https://github.com/yl4579/StyleTTS2)

A free demo of StyleTTS 2. **I am not affiliated with the StyleTTS 2 Authors.**

**Before using this demo, you agree to inform the listeners that the speech samples are synthesized by the pre-trained models, unless you have the permission to use the voice you synthesize. That is, you agree to only use voices whose speakers grant the permission to have their voice cloned, either directly or by license before making synthesized voices public, or you have to publicly announce that these voices are synthesized if you do not have the permission to use these voices.**

Is there a long queue on this space? Duplicate it and add a more powerful GPU to skip the wait! **Note: Thank you to Hugging Face for their generous GPU grant program!**

**NOTE: StyleTTS 2 does better on longer texts.** For example, making it say "hi" will produce a lower-quality result than making it say a longer phrase.""")
    gr.DuplicateButton("Duplicate Space")
    # gr.TabbedInterface([vctk, clone, lj, longText], ['Multi-Voice', 'Voice Cloning', 'LJSpeech', 'Long Text [Beta]'])
    gr.TabbedInterface([vctk, clone, lj], ['Multi-Voice', 'Voice Cloning', 'LJSpeech', 'Long Text [Beta]'])
    gr.Markdown("""
Demo by [mrfakename](https://twitter.com/realmrfakename). I am not affiliated with the StyleTTS 2 authors.

Run this demo locally using Docker:

```bash
docker run -it -p 7860:7860 --platform=linux/amd64 --gpus all registry.hf.space/styletts2-styletts2:latest python app.py
```
""") # Please do not remove this line.
if __name__ == "__main__":
    # demo.queue(api_open=False, max_size=15).launch(show_api=False)
    demo.queue(api_open=False, max_size=15).launch(show_api=False)