File size: 12,820 Bytes
89afe89 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 |
import cv2, os, time, math
import numpy as np
from skimage.metrics import structural_similarity as ssim
import matplotlib.pyplot as plt
def compute_optical_flow(prev_gray, curr_gray):
flow = cv2.calcOpticalFlowFarneback(prev_gray, curr_gray, None, 0.5, 3, 15, 3, 5, 1.2, 0)
magnitude, _ = cv2.cartToPolar(flow[..., 0], flow[..., 1])
#print(f"DEBUG : max and min values are {np.max(magnitude)} {np.min(magnitude)}")
return np.max(magnitude)
def compute_orb_distance(prev_frame, curr_frame, match_threshold = 40):
# Initialize ORB detector
orb = cv2.ORB_create()
# Find the keypoints and descriptors with ORB
kp1, des1 = orb.detectAndCompute(prev_frame, None)
kp2, des2 = orb.detectAndCompute(curr_frame, None)
# Create BFMatcher object
bf = cv2.BFMatcher(cv2.NORM_HAMMING, crossCheck=True)
# Match descriptors
orig_matches = bf.match(des1, des2)
matches = [match for match in orig_matches if match.distance < match_threshold]
# Sort them in the order of their distance (descriptor similarity)
matches = sorted(matches, key=lambda x: x.distance)
# Calculate average descriptor distance of top 10% matches
num_matches = len(matches) # Use 10% of matches
if num_matches == 0:
return 0
max_descriptor_distance = max(match.distance for match in matches[:num_matches])
# Calculate Euclidean distances (physical movement) for top matches
euclidean_distances = []
for match in matches[:num_matches]:
# Get keypoint coordinates from both frames
pt1 = np.array(kp1[match.queryIdx].pt) # Coordinates in prev_frame
pt2 = np.array(kp2[match.trainIdx].pt) # Coordinates in curr_frame
# Compute Euclidean distance between matched keypoints
euclidean_distance = np.sqrt((pt1[0] - pt2[0])**2 + (pt1[1] - pt2[1])**2)
#print(f"DEBUG!! euclidean_distance is {euclidean_distance} between {pt1} and {pt2}")
euclidean_distances.append(euclidean_distance)
# Average Euclidean distance (keypoint movement)
max_movement_distance = np.max(euclidean_distances)
# Normalize max descriptor distance (for 256-bit ORB descriptors)
normalized_descriptor_distance = max_descriptor_distance / 256
# Return both descriptor similarity and keypoint movement
#print(f"DEBUG!! max_descriptor_distance : {max_descriptor_distance}")
return max_movement_distance
def compute_ssim(prev_frame, curr_frame):
return ssim(prev_frame, curr_frame, data_range=255)
def compute_pixel_diff(prev_frame, curr_frame):
diff = cv2.absdiff(prev_frame, curr_frame)
return np.mean(diff)
def preprocess_frame(frame, width=640, height=360):
target_size = (width, height)
resized_frame = cv2.resize(frame, target_size, interpolation=cv2.INTER_AREA) # Use INTER_AREA for shrinking
return resized_frame
def smooth_curve(data, window_size=5):
return np.convolve(data, np.ones(window_size)/window_size, mode='valid')
def find_timestamp_clusters(fast_motion_timestamps, min_time_gap=5):
clusters = [] # List to hold the clusters of timestamps
current_cluster = [] # Temporary list to hold the current cluster
for i, timestamp in enumerate(fast_motion_timestamps):
# If it's the first timestamp, start a new cluster
if i == 0:
current_cluster.append(timestamp)
else:
# Check the time difference between the current and previous timestamp
if timestamp - fast_motion_timestamps[i-1] <= min_time_gap:
# If the difference is less than or equal to the min_time_gap, add it to the current cluster
current_cluster.append(timestamp)
else:
# If the difference is greater than min_time_gap, finish the current cluster and start a new one
clusters.append(current_cluster)
current_cluster = [timestamp]
# Add the last cluster to the clusters list
if current_cluster:
clusters.append(current_cluster)
return clusters
def detect_fast_motion(video_path, output_dir, end_time, start_time, window_size=3, motion_threshold=0.6, step = 2):
cap = cv2.VideoCapture(video_path)
fps = cap.get(cv2.CAP_PROP_FPS)
height = cap.get(cv2.CAP_PROP_FRAME_HEIGHT)
width = cap.get(cv2.CAP_PROP_FRAME_WIDTH)
orb_scores = []
#optical_flow_scores = []
ssim_scores = []
#pixel_diff_scores = []
timestamps = []
frame_list = []
prev_frame = None
frame_count = 0
while cap.isOpened():
ret, orig_frame = cap.read()
if not ret:
break
#print(f"DEBUG!! frame : {frame_count} time : {frame_count/fps}")
if height == 360 and width == 640:
frame = orig_frame
else:
frame = preprocess_frame(orig_frame, width = 640, height = 360)
if frame_count > end_time * fps:
break
if frame_count < start_time * fps or frame_count % step != 0:
frame_count += 1
continue
gray = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY)
if prev_frame is not None:
#optical_flow_scores.append(compute_optical_flow(prev_frame, gray))
orb_scores.append(compute_orb_distance(prev_frame, gray))
ssim_scores.append(compute_ssim(prev_frame, gray))
#pixel_diff_scores.append(compute_pixel_diff(prev_frame, gray))
#print(f"DEBUG : time : {frame_count/fps} end_time : {end_time} start_time : {start_time}")
timestamps.append(frame_count/fps)
else:
#optical_flow_scores.append(0)
orb_scores.append(0)
ssim_scores.append(1)
timestamps.append(start_time)
frame_list.append(frame)
prev_frame = gray
frame_count += 1
#if frame_count % 100 == 0:
# print(f"Processed {frame_count} frames")
cap.release()
new_fps = len(timestamps)/ (max(timestamps) - min(timestamps))
print(f"fps : {fps} frame_height : {height} frame_width : {width} New fps is {new_fps}")
# Normalize scores by image diagonal * time between frame : https://chatgpt.com/share/66f684b9-dd4c-8010-bf9c-421c3c6ef84a
#optical_flow_scores = np.array(optical_flow_scores) / (np.sqrt(gray.shape[0]**2 + gray.shape[1]**2) / new_fps)
ssim_scores = (1 - np.array(ssim_scores)) * new_fps # Invert SSIM scores
orb_scores = (np.array(orb_scores) * new_fps)/(np.sqrt(640**2 + 360**2))
# Smooth both SSIM and ORB scores
smoothed_ssim_scores = smooth_curve(ssim_scores, window_size=window_size)
smoothed_orb_scores = smooth_curve(orb_scores, window_size=window_size)
#pixel_diff_scores = np.array(pixel_diff_scores) / np.max(pixel_diff_scores)
# Combine metrics
combined_scores = (0.3 * orb_scores) + (0.7 * ssim_scores)
smoothed_combined_scores = (0.3 * smoothed_orb_scores) + (0.7 * smoothed_ssim_scores)
# Adjust X-axis to reflect the center of the window used for smoothing
adjusted_timestamps = timestamps[window_size // 2 : -(window_size // 2)]
# Detect fast motion using sliding window
fast_motion_timestamps = []
fast_motion_frames = []
fast_motion_mags = []
#for i in range(len(combined_scores) - window_size + 1):
# window = combined_scores[i:i + window_size]
# if np.mean(window) > motion_threshold:
# #print(f"DEBUG!! mean : {np.mean(window)} i : {i + (start_time * fps)} i+window_size : {i+window_size + (start_time * fps)} window : {window}")
# #fast_motion_frames.extend(range(i + int(start_time * fps), i + window_size + int(start_time * fps)))
# fast_motion_mags.extend(combined_scores[i:i + window_size])
# fast_motion_timestamps.extend(timestamps[i:i + window_size])
ids = []
for i in range(len(combined_scores)):
if combined_scores[i] > motion_threshold:
fast_motion_mags.append(combined_scores[i])
fast_motion_timestamps.append(timestamps[i])
fast_motion_frames.append(frame_list[i])
ids.append(i)
padded_fast_motion_frames = []
padded_fast_motion_timestamps = []
if len(ids) < 5 and len(ids) > 0:
#Padding fast_motion_frames and fast_motion_timestamps
padded_fast_motion_frames.extend(frame_list[min(ids) - 2:min(ids)])
padded_fast_motion_timestamps.extend(timestamps[min(ids) - 2:min(ids)])
padded_fast_motion_frames.extend(fast_motion_frames)
padded_fast_motion_timestamps.extend(fast_motion_timestamps)
padded_fast_motion_frames.extend(frame_list[max(ids) + 1:max(ids) + 3])
padded_fast_motion_timestamps.extend(timestamps[max(ids) + 1:max(ids) + 3])
print(f"padded_fast_motion_timestamps are {padded_fast_motion_timestamps}. Length of padded_fast_motion_timestamps is {len(padded_fast_motion_frames)}")
else:
padded_fast_motion_frames = fast_motion_frames
padded_fast_motion_timestamps = fast_motion_timestamps
# Plot results
plt.figure(figsize=(12, 6))
plt.plot(adjusted_timestamps, smoothed_orb_scores, label='ORB Distance')
plt.plot(adjusted_timestamps, smoothed_ssim_scores, label='Inverted SSIM')
#plt.plot(adjusted_timestamps, optical_flow_scores, label='Optical Flow')
plt.plot(adjusted_timestamps, smoothed_combined_scores, label='Combined Score')
plt.axhline(y=motion_threshold, color='r', linestyle='--', label='Threshold')
plt.xlabel('Frame')
plt.ylabel('Normalized Score')
plt.title('Motion Detection Metrics')
plt.legend()
plt.savefig(f"{output_dir}/motion_detection_plot_smoothened_{video_path.split('/')[-1].split('.')[0]}.png")
# Plot results
plt.figure(figsize=(12, 6))
#plt.plot(timestamps, orb_scores, label='ORB Distance')
plt.plot(timestamps, ssim_scores, label='Inverted SSIM')
#plt.plot(timestamps, optical_flow_scores, label='Optical Flow')
plt.plot(timestamps, combined_scores, label='Combined Score')
plt.axhline(y=motion_threshold, color='r', linestyle='--', label='Threshold')
plt.xlabel('Frame')
plt.ylabel('Normalized Score')
plt.title('Motion Detection Metrics')
plt.legend()
plt.savefig(f"{output_dir}/motion_detection_plot_raw_{video_path.split('/')[-1].split('.')[0]}.png")
# Print results
print(f"Max motion score is {np.max(combined_scores)} and mean motion score is {np.mean(combined_scores)} from {np.min(timestamps)} to {np.max(timestamps)}")
print(f"Detected {len(fast_motion_timestamps)} frames when step = {step}.")
try:
print(f"fast motion between {np.min(fast_motion_timestamps)} and {np.max(fast_motion_timestamps)}")
except:
pass
#for i in range(len(fast_motion_timestamps)):
# timestamp = fast_motion_timestamps[i]
# mag = fast_motion_mags[i]
# print(f"(Time: {timestamp:.2f}s) (Magnitude : {mag:.2f})")
if len(fast_motion_timestamps) == 0:
print("FAST MOTION NOT DETECTED!")
return [], []
elif len(fast_motion_timestamps) > 0.5 * len(combined_scores):
print("More than half of the video has fast motion")
return fast_motion_timestamps, padded_fast_motion_frames
else:
timestamp_clusters = find_timestamp_clusters(fast_motion_timestamps, min_time_gap = 5)
for timestamp_cluster in timestamp_clusters:
print(f"min time : {np.min(timestamp_cluster)} max time : {np.max(timestamp_cluster)} length : {len(timestamp_cluster)}")
return timestamp_clusters, padded_fast_motion_frames
'''
# Open the video file
video_path = "../test_videos/"
mp4_files = [f for f in os.listdir(video_path) if f.endswith('.mp4')]
output_dir = "motion_detection_results"
os.system(f"rm -rf {output_dir}")
os.system(f"mkdir {output_dir}")
end_time = 15
start_time = 0
for mp4_file in mp4_files:
print(f"\nAnalyzing video {mp4_file}")
if mp4_file == "8.mp4":
end_time = 60
start_time = 0
elif mp4_file == "6.mp4":
end_time = 32
start_time = 0
elif mp4_file == "3.mp4":
end_time = 6.5 #To remove last few frames that are blurry
start_time = 0
elif mp4_file == "2.mp4":
end_time = 182
start_time = 140
else:
end_time = 15
start_time = 0
#if mp4_file != "3.mp4" and mp4_file != "5.mp4" and mp4_file != "6.mp4":
# continue
start = time.time()
fast_motion_timestamps = detect_fast_motion(video_path + mp4_file, output_dir, end_time, start_time, motion_threshold = 1.5)
end = time.time()
print(f"Execution time for {mp4_file} : {end - start} seconds. Duration of the video was {end_time - start_time} seconds")
''' |